
Guojian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6645521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	8.1	1,572
2	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	13.7	702
3	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	8.1	596
4	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	8.1	479
5	Pacific western boundary currents and their roles in climate. Nature, 2015, 522, 299-308.	13.7	474
6	Pantropical climate interactions. Science, 2019, 363, .	6.0	419
7	Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 2018, 564, 201-206.	13.7	394
8	Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth & Environment, 2020, 1, 215-231.	12.2	318
9	Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 2014, 510, 254-258.	13.7	296
10	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	12.2	197
11	Continued increase of extreme ElÂNiño frequency long after 1.5 °C warming stabilization. Nature Climate Change, 2017, 7, 568-572.	8.1	174
12	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	6.0	92
13	Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2021, 2, 680-698.	12.2	85
14	Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 2022, 12, 228-231.	8.1	85
15	Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nature Climate Change, 2021, 11, 27-32.	8.1	79
16	Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries. Geophysical Research Letters, 2019, 46, 5469-5479.	1.5	65
17	The Pacific Decadal Oscillation less predictable under greenhouse warming. Nature Climate Change, 2020, 10, 30-34.	8.1	60
18	Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Scientific Reports, 2013, 3, 2039.	1.6	56

GUOJIAN WANG

#	Article	IF	CITATIONS
19	Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nature Communications, 2018, 9, 1419.	5.8	51
20	Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian "black summer―bushfires. Geoscience Letters, 2020, 7, .	1.3	48
21	Weakening Atlantic Niño–Pacific connection under greenhouse warming. Science Advances, 2019, 5, eaax4111.	4.7	42
22	A Unique Feature of the 2019 Extreme Positive Indian Ocean Dipole Event. Geophysical Research Letters, 2020, 47, e2020GL088615.	1.5	40
23	Assessing the Impact of Model Biases on the Projected Increase in Frequency of Extreme Positive Indian Ocean Dipole Events. Journal of Climate, 2017, 30, 2757-2767.	1.2	30
24	Increased variability of the western Pacific subtropical high under greenhouse warming. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
25	Definition of Extreme El Niño and Its Impact on Projected Increase in Extreme El Niño Frequency. Geophysical Research Letters, 2017, 44, 11,184.	1.5	26
26	Trends in Southern Hemisphere wind-driven circulation in CMIP5 models over the 21st century: Ozone recovery versus greenhouse forcing. Journal of Geophysical Research: Oceans, 2014, 119, 2974-2986.	1.0	25
27	Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 2022, 12, 649-654.	8.1	23
28	Change in strong Eastern Pacific El Niño events dynamics in the warming climate. Climate Dynamics, 2020, 54, 901-918.	1.7	19
29	Stronger Increase in the Frequency of Extreme Convective than Extreme Warm El Niño Events under Greenhouse Warming. Journal of Climate, 2020, 33, 675-690.	1.2	18
30	Oceanic Processes in Ocean Temperature Products Key to a Realistic Presentation of Positive Indian Ocean Dipole Nonlinearity. Geophysical Research Letters, 2020, 47, e2020GL089396.	1.5	17
31	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2015, 96, 1969-1972.	1.7	8
32	Simulated Thermocline Tilt Over the Tropical Indian Ocean and Its Influence on Future Sea Surface Temperature Variability. Geophysical Research Letters, 2021, 48, e2020GL091902.	1.5	8
33	Indian Ocean warming as key driver of long-term positive trend of Arctic Oscillation. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	8
34	Diversity of ENSOâ€Related Surface Temperature Response in Future Projection in CMIP6 Climate Models: Climate Change Scenario Versus ENSO Intensity. Geophysical Research Letters, 2022, 49, .	1.5	5
35	Improved Simulation of ENSO Variability Through Feedback From the Equatorial Atlantic in a Pacemaker Experiment. Geophysical Research Letters, 2022, 49, .	1.5	5
36	ls Preconditioning Effect On Strong Positive Indian Ocean Dipole by a Preceding Central Pacific El Niño Deterministic?. Geophysical Research Letters, 2021, 48, e2020GL092223.	1.5	2

1

37Frontiers in Climate Predictions and Projections. Frontiers in Climate, 2020, 2, .1.32	#	Article	IF	CITATIONS
	37	Frontiers in Climate Predictions and Projections. Frontiers in Climate, 2020, 2, .	1.3	2

Response of the positive Indian Ocean dipole to climate change and impact on Indian summer monsoon rainfall. , 2021, , 413-432.