Chunjoong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6645347/publications.pdf

Version: 2024-02-01

76326 71685 6,275 129 40 76 citations h-index g-index papers 131 131 131 9009 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Twoâ€Dimensional SnS ₂ Nanoplates with Extraordinary High Discharge Capacity for Lithium lon Batteries. Advanced Materials, 2008, 20, 4269-4273.	21.0	521
2	Critical Size of a Nano SnO2Electrode for Li-Secondary Battery. Chemistry of Materials, 2005, 17, 3297-3301.	6.7	517
3	Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources, 2007, 167, 529-535.	7.8	310
4	Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li–S Battery. Advanced Energy Materials, 2017, 7, 1602567.	19.5	309
5	Ultrathin Lithium-lon Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-lon Batteries. Chemistry of Materials, 2014, 26, 3128-3134.	6.7	192
6	The Formation Mechanism of Fluorescent Metal Complexes at the Li _{<i>x</i>} Ni _{0.5} Mn _{1.5} O _{4$\hat{a}^{\hat{a}}$Interface. Journal of the American Chemical Society, 2015, 137, 3533-3539.}	13.7	182
7	Direct Observation of Reversible Magnesium Ion Intercalation into a Spinel Oxide Host. Advanced Materials, 2015, 27, 3377-3384.	21.0	178
8	Mechanism of Phase Propagation During Lithiation in Carbonâ€Free Li ₄ Ti ₅ O ₁₂ Battery Electrodes. Advanced Functional Materials, 2013, 23, 1214-1222.	14.9	140
9	A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy and Environmental Science, 2020, 13, 1231-1239.	30.8	140
10	Monodisperse Sn Nanocrystals as a Platform for the Study of Mechanical Damage during Electrochemical Reactions with Li. Nano Letters, 2013, 13, 1800-1805.	9.1	134
11	The Importance of Confined Sulfur Nanodomains and Adjoining Electron Conductive Pathways in Subreaction Regimes of Liâ€6 Batteries. Advanced Energy Materials, 2017, 7, 1700074.	19.5	127
12	Copolymerization of Polythiophene and Sulfur To Improve the Electrochemical Performance in Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 7011-7017.	6.7	120
13	Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. Journal of Power Sources, 2005, 146, 58-64.	7.8	117
14	Elemental Sulfur and Molybdenum Disulfide Composites for Li–S Batteries with Long Cycle Life and High-Rate Capability. ACS Applied Materials & Long Rate Capa	8.0	108
15	Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography. Nature Communications, 2018, 9, 921.	12.8	107
16	Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Materials, 2016, 8, e272-e272.	7.9	105
17	Hydroxyl-Quenching Effects on the Photoluminescence Properties of SnO2:Eu3+ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 4164-4167.	3.1	101
18	Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li _{<i>x</i>} FePO ₄ . Nano Letters, 2015, 15, 4282-4288.	9.1	99

#	Article	IF	CITATIONS
19	NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Scientific Reports, 2016, 6, 35066.	3.3	99
20	Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries. Journal of Power Sources, 2006, 155, 391-394.	7.8	97
21	Comparison of the Performance of LiNi1/2Mn3/2O4 with Different Microstructures. Journal of the Electrochemical Society, 2011, 158, A997.	2.9	81
22	Effective wrapping of graphene on individual Li ₄ Ti ₅ O ₁₂ grains for high-rate Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2023-2027.	10.3	76
23	Synthesis and photoluminescence of Mn-doped zinc sulfide nanoparticles. Applied Physics Letters, 2007, 90, 101910.	3.3	70
24	Electrochemical Properties of Disordered-Carbon-Coated SnO[sub 2] Nanoparticles for Li Rechargeable Batteries. Electrochemical and Solid-State Letters, 2006, 9, A408.	2.2	68
25	Breathable Carbonâ€Free Electrode: Black TiO ₂ with Hierarchically Ordered Porous Structure for Stable Li–O ₂ Battery. Advanced Energy Materials, 2017, 7, 1700814.	19.5	65
26	Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon, 2017, 114, 275-283.	10.3	59
27	UV-light-activated H2S gas sensing by a TiO2 nanoparticulate thin film at room temperature. Journal of Alloys and Compounds, 2019, 778, 247-255.	5.5	57
28	Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 28438-28443.	8.0	56
29	Highly luminescent surface-passivated ZnS:Mn nanoparticles by a simple one-step synthesis. Applied Physics Letters, 2008, 93, .	3.3	53
30	Surface Chemistry Consequences of Mg-Based Coatings on LiNi _{0.5} Mn _{1.5} O ₄ Electrode Materials upon Operation at High Voltage. Journal of Physical Chemistry C, 2014, 118, 10596-10605.	3.1	53
31	The Effect of AlPO[sub 4]-Coating Layer on the Electrochemical Properties in LiCoO[sub 2] Thin Films. Journal of the Electrochemical Society, 2006, 153, A1773.	2.9	50
32	Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery. Carbon, 2016, 103, 255-262.	10.3	47
33	Synthesis of layered–layered xLi2MnO3·(1â^'x)LiMO2 (MÂ=ÂMn, Ni, Co) nanocomposite electrodes materials by mechanochemical process. Journal of Power Sources, 2012, 220, 422-429.	7.8	46
34	Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode. Journal of Materials Chemistry A, 2014, 2, 2701.	10.3	46
35	Development of carbon-based cathodes for Li-air batteries: Present and future. Electronic Materials Letters, 2016, 12, 551-567.	2.2	45
36	Anion exchange and successive ionic layer adsorption and reaction-assisted coating of BiVO4 with Bi2S3 to produce nanostructured photoanode for enhanced photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2021, 585, 72-84.	9.4	44

#	Article	IF	CITATIONS
37	Nonequilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution. Advanced Energy Materials, 2015, 5, 1402040.	19.5	42
38	Carbonâ€Free TiO ₂ Battery Electrodes Enabled by Morphological Control at the Nanoscale. Advanced Energy Materials, 2013, 3, 1286-1291.	19.5	41
39	Atomic defects during ordering transitions in LiNi _{0.5} Mn _{1.5} O ₄ and their relationship with electrochemical properties. Journal of Materials Chemistry A, 2016, 4, 8255-8262.	10.3	41
40	Investigation of chlorine-mediated microstructural evolution of CH3NH3Pbl3(Cl) grains for high optoelectronic responses. Nano Energy, 2016, 25, 91-99.	16.0	41
41	Insights on the delithiation/lithiation reactions of Li Mn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy, 2017, 39, 371-379.	16.0	41
42	Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration. Sensors and Actuators B: Chemical, 2019, 281, 262-272.	7.8	41
43	Fe2O3 hierarchical tubular structure decorated with cobalt phosphide (CoP) nanoparticles for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2021, 417, 129278.	12.7	41
44	Modification of Gold Catalysis with Aluminum Phosphate for Oxygen-Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 3688-3692.	3.1	40
45	Effect of SILAR-anchored ZnFe2O4 on the BiVO4 nanostructure: An attempt towards enhancing photoelectrochemical water splitting. Applied Surface Science, 2021, 546, 149033.	6.1	39
46	Synthesis of layered–layered 0.5Li2MnO3·0.5LiCoO2 nanocomposite electrode materials by the mechanochemical process and first principles study. Journal of Materials Chemistry, 2012, 22, 25418.	6.7	36
47	Rb2CO3-decorated In2O3 nanoparticles for the room-temperature detection of sub-ppm level NO2. Sensors and Actuators B: Chemical, 2020, 313, 128001.	7.8	36
48	Rational construction of S-doped FeOOH onto Fe2O3 nanorods for enhanced water oxidation. Journal of Colloid and Interface Science, 2022, 616, 749-758.	9.4	35
49	Electrochemical Reduction of a Spinel-Type Manganese Oxide Cathode in Aqueous Electrolytes with Ca ²⁺ or Zn ²⁺ . Journal of Physical Chemistry C, 2018, 122, 4182-4188.	3.1	33
50	Carbon nanotube-metal oxide nanocomposite gas sensing mechanism assessed via NO2 adsorption on n-WO3/p-MWCNT nanocomposites. Ceramics International, 2020, 46, 29233-29243.	4.8	33
51	Iron-phosphateâ^•platinumâ^•carbon nanocomposites for enhanced electrocatalytic stability. Applied Physics Letters, 2007, 91, 113101.	3.3	32
52	Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials. Nanoscale Research Letters, 2015, 10, 204.	5.7	32
53	Deposition of zinc cobaltite nanoparticles onto bismuth vanadate for enhanced photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2021, 599, 453-466.	9.4	32
54	Conformal Polymeric Multilayer Coatings on Sulfur Cathodes via the Layer-by-Layer Deposition for High Capacity Retention in Li–S Batteries. ACS Macro Letters, 2016, 5, 471-475.	4.8	31

#	Article	IF	Citations
55	Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials. Journal of Physical Chemistry C, 2020, 124, 7082-7090.	3.1	30
56	The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. Journal of Materials Research, 2009, 24, 2762-2766.	2.6	29
57	Optimization of photogenerated charge transport using type-II heterojunction structure of CoP/BiVO4:WO3 for high efficient solar-driver water splitting. Journal of Alloys and Compounds, 2022, 899, 163292.	5.5	29
58	Nanostructured Platinum/Iron Phosphate Thin-Film Electrodes for Methanol Oxidation. Electrochemical and Solid-State Letters, 2006, 9, E27.	2.2	28
59	The dependence of dielectric properties on the thickness of (Ba,Sr)TiO3 thin films. Current Applied Physics, 2007, 7, 168-171.	2.4	28
60	Synchrotron-based x-ray absorption spectroscopy for the electronic structure of Li x Mn 0.8 Fe 0.2 PO 4 mesocrystal in Li + batteries. Nano Energy, 2017, 31, 495-503.	16.0	28
61	The effect of nitrogen on the cycling performance in thin-film Si1â^'xNx anode. Journal of Solid State Chemistry, 2008, 181, 2139-2142.	2.9	26
62	Transport of photo-generated electrons and holes in TiO2/CdS/CdSe core-shell nanorod structure toward high performance photoelectrochemical cell electrode. Electrochimica Acta, 2019, 295, 710-718.	5.2	26
63	Co3O4/reduced graphene oxide/BiVO4 nanorod as high performance photoanode for water oxidation. Electrochimica Acta, 2020, 364, 137283.	5.2	26
64	ZnTe-coated ZnO nanorods: Hydrogen sulfide nano-sensor purely controlled by pn junction. Materials and Design, 2020, 191, 108628.	7.0	25
65	Hole-supply-rate-controlled methanol-gas-sensing reaction over p-type Co3O4/single-walled carbon nanotube hybrid structures. Sensors and Actuators B: Chemical, 2021, 326, 128956.	7.8	25
66	Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14, 1382-1389.	10.4	24
67	Multivalent Electrochemistry of Spinel Mg _{<i>x</i>} Mn _{3–<i>x</i>} O ₄ Nanocrystals. Chemistry of Materials, 2018, 30, 1496-1504.	6.7	23
68	Electrochemical properties of tin phosphates with various mesopore ratios. Journal of Power Sources, 2007, 172, 908-912.	7.8	22
69	Nanostructured \hat{l}^2 -Bi2O3/PbS heterojunction as np-junction photoanode for enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2021, 870, 159545.	5.5	22
70	Optimization strategy for CdSe@CdS core–shell nanorod structures toward high performance water splitting photoelectrodes. Materials Research Bulletin, 2020, 129, 110914.	5.2	22
71	Tailoring the Mesoscopic TiO2 Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells. Nanoscale Research Letters, 2017, 12, 57.	5.7	21
72	Nitrogen-Doped Graphene Quantum Dots: Sulfiphilic Additives for the High-Performance Li–S Cells. ACS Applied Energy Materials, 2021, 4, 3518-3525.	5.1	21

#	Article	IF	CITATIONS
73	Nanostructural Effect of AlPO[sub 4]-Nanoparticle Coating on the Cycle-Life Performance in LiCoO[sub 2] Thin Films. Electrochemical and Solid-State Letters, 2007, 10, A32.	2.2	20
74	Layered-Layered-Spinel Cathode Materials Prepared by a High-Energy Ball-Milling Process for Lithium-ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 363-370.	8.0	20
75	Three-Dimensional Hierarchical Structures of TiO ₂ /CdS Branched Core-Shell Nanorods as a High-Performance Photoelectrochemical Cell Electrode for Hydrogen Production. Journal of the Electrochemical Society, 2016, 163, H434-H439.	2.9	20
76	Synthesis of LiMn 0.8 Fe 0.2 PO 4 Mesocrystals for High-Performance Li-lon Cathode Materials. Electrochimica Acta, 2016, 216, 203-210.	5. 2	19
77	Effect of Si(iv) substitution on electrochemical, magnetic and spectroscopic performance of nanosized LiMn2â^'xSixO4. Journal of Materials Chemistry A, 2013, 1, 10857.	10.3	18
78	Stabilization of Battery Electrode/Electrolyte Interfaces Employing Nanocrystals with Passivating Epitaxial Shells. Chemistry of Materials, 2015, 27, 394-399.	6.7	17
79	A Hydrogen Sulfide Gas Sensor Based on Pd-Decorated ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2016, 16, 10351-10355.	0.9	17
80	Effect of Passivating Shells on the Chemistry and Electrode Properties of LiMn ₂ O ₄ Nanocrystal Heterostructures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3823-3833.	8.0	17
81	The Effect of Al Substitution on the Chemical and Electrochemical Phase Stability of Orthorhombic LiMnO ₂ . Journal of the Electrochemical Society, 2013, 160, A46-A52.	2.9	16
82	Evaluation of graphene-wrapped LiFePO $<$ sub $>$ 4 $<$ /sub $>$ as novel cathode materials for Li-ion batteries. RSC Advances, 2016, 6, 105081-105086.	3 . 6	16
83	Highly Linear and Symmetric Weight Modification in HfO ₂ â€Based Memristive Devices for Highâ€Precision Weight Entries. Advanced Electronic Materials, 2020, 6, 2000434.	5.1	16
84	Fluorine-surface-modified tin-doped hematite nanorod array photoelectrodes with enhanced water oxidation activity. Applied Surface Science, 2021, 558, 149898.	6.1	16
85	Cooperative Conformational Change of a Single Organic Molecule for Ultrafast Rechargeable Batteries. ACS Energy Letters, 2021, 6, 1659-1669.	17.4	15
86	Sn Doping into Hematite Nanorods for High-Performance Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2019, 166, H743-H749.	2.9	14
87	Energy diagram analysis of photoelectrochemical water splitting process. Nano Energy, 2019, 57, 660-669.	16.0	14
88	Enhanced carrier collection efficiency in hierarchical nano-electrode for a high-performance photoelectrochemical cell. Journal of Power Sources, 2016, 336, 367-375.	7.8	13
89	Incorporation of an Au-rGO Layer to Enhance the Photocatalytic Application of Optimized CdS Thin Film. Journal of the Electrochemical Society, 2019, 166, H3112-H3118.	2.9	13
90	Fully "Erase-free―Multi-Bit Operation in HfO ₂ -Based Resistive Switching Device. ACS Applied Materials & Devices, 2019, 11, 8234-8241.	8.0	13

#	Article	IF	CITATIONS
91	Electrical, Structural, Optical, and Adhesive Characteristics of Aluminum-Doped Tin Oxide Thin Films for Transparent Flexible Thin-Film Transistor Applications. Materials, 2019, 12, 137.	2.9	13
92	Defect-Induced Gas-Sensing Properties of a Flexible SnS Sensor under UV Illumination at Room Temperature. Sensors, 2020, 20, 5701.	3.8	13
93	High-Voltage Cathode Materials for Lithium-Ion Batteries: Freeze-Dried LiMn0.8Fe0.1M0.1PO4/C (M = Fe,) Tj ETQq	11 1 0.784 4.0	314 rgBT /(
94	A Separated Receptor/Transducer Scheme as Strategy to Enhance the Gas Sensing Performance Using Hematite–Carbon Nanotube Composite. Sensors, 2019, 19, 3915.	3.8	12
95	Electrochemical stability in cerium-phosphate–coated LiCoO2 thin films. Journal of Materials Research, 2007, 22, 688-694.	2.6	11
96	Effects of iron-phosphate coating on Ru dissolution in the PtRu thin-film electrodes. Journal of Materials Research, 2009, 24, 140-144.	2.6	11
97	Efficient Si Nanowire Array Transfer via Biâ€Layer Structure Formation Through Metalâ€Assisted Chemical Etching. Advanced Functional Materials, 2014, 24, 1949-1955.	14.9	11
98	pn-Heterojunction of the SWCNT/ZnO nanocomposite for temperature dependent reaction with hydrogen. Journal of Colloid and Interface Science, 2021, 584, 582-591.	9.4	11
99	High Performance of a Polydopamine-Coated Graphite Anode with a Stable SEI Layer. ACS Applied Energy Materials, 2022, 5, 5610-5616.	5.1	11
100	Si-Based Flexible Memristive Systems Constructed Using Top-Down Methods. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3957-3961.	8.0	10
101	Visualization of the Phase Propagation within Carbon-Free Li4Ti5O12 Battery Electrodes. Journal of Physical Chemistry C, 2016, 120, 29030-29038.	3.1	10
102	The effect of polymeric binders in the sulfur cathode on the cycling performance for lithium–sulfur batteries. Chemical Communications, 2019, 55, 14609-14612.	4.1	10
103	Solution Synthesis of Copper Microflowers. Electronic Materials Letters, 2009, 5, 201-204.	2.2	8
104	Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries Using Synchrotron Radiation Techniques. Journal of Visualized Experiments, 2013, , e50594.	0.3	8
105	3D inverse-opal structured Li4Ti5O12 Anode for fast Li-Ion storage capabilities. Electronic Materials Letters, 2017, 13, 505-511.	2.2	8
106	Nanocrystal heterostructures of LiCoO ₂ with conformal passivating shells. Nanoscale, 2018, 10, 6954-6961.	5.6	8
107	Nanoporous Pt thin films with superior catalytic activities by the electrochemical dissolution of Al. Metals and Materials International, 2009, 15, 989-992.	3.4	7
108	Electrochemical Reactivity with Lithium of Spinel-type ZnFe _{2–<i>y</i>} Cr _{<i>y</i>} O ₄ (0 ≤i>y â‰型). Journal of Physical Chemistry C, 2013, 117, 24213-24223.	3.1	7

#	Article	IF	CITATIONS
109	Effect of annealing temperature on the interfacial interaction of LiNi0.5Mn1.5O4 thin film cathode with stainless-steel substrate. Journal of Electroceramics, 2019, 42, 104-112.	2.0	7
110	Enhancing the inherent catalytic activity and stability of TiO⟨sub⟩2⟨/sub⟩ supported Pt single-atoms at CeO⟨sub⟩⟨i⟩x⟨/i⟩⟨/sub⟩–TiO⟨sub⟩2⟨/sub⟩ interfaces. Journal of Materials Chemistry A, 2022, 10, 5942-5952.	10.3	7
111	Interspersing CeO _{<i>x</i>} Clusters to the Pt–TiO ₂ Interfaces for Catalytic Promotion of TiO ₂ -Supported Pt Nanoparticles. Journal of Physical Chemistry Letters, 2022, 13, 1719-1725.	4.6	7
112	Understandings about functionalized porous carbon via scanning transmission x-ray microscopy (STXM) for high sulfur utilization in lithium-sulfur batteries. Nano Energy, 2022, 100, 107446.	16.0	7
113	The Electrochemical Analysis using Critical Parameters in Li–S Battery. Bulletin of the Korean Chemical Society, 2015, 36, 2596-2600.	1.9	6
114	Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery ChemInform, 2005, 36, no.	0.0	3
115	Toward General Rules for the Design of Battery Electrodes Based on Titanium Oxides and Free of Conductive Additives. Energy Technology, 2014, 2, 383-390.	3.8	3
116	Intercalation of Mg into a Few-Layer Phyllomanganate in Nonaqueous Electrolytes at Room Temperature. Chemistry of Materials, 2020, 32, 6014-6025.	6.7	3
117	Effects of Photochemical Oxidation of the Carbonaceous Additives on Li–S Cell Performance. ACS Applied Materials & Description (2011), 13, 41517-41523.	8.0	3
118	Modification of the electrochemical activity of LiMn1.95Si0.05O4 spinel via addition of phases with different physico-chemical properties. Journal of Materials Chemistry A, 2014, 2, 3216.	10.3	2
119	Lithiumâ€Sulfur Batteries: Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li–S Battery (Adv. Energy Mater. 11/2017). Advanced Energy Materials, 2017, 7, .	19.5	2
120	Stabilization of Nickel-Rich Layered Cathode Materials of High Energy Density by Ca Doping. Korean Journal of Materials Research, 2018, 28, 273-278.	0.2	2
121	Temperature-Dependence Study on the Hydrogen Transport Properties of Polymers Used for Hydrogen Infrastructure. Applied Science and Convergence Technology, 2021, 30, 163-166.	0.9	2
122	Synthesis and Characterization of Core-Shell Nanocrystals of Co-Rich Cathodes. Journal of the Electrochemical Society, 2020, 167, 050501.	2.9	1
123	Synthesis of Magneli Phases and Application to the Photoelectrochemical Electrode. Korean Journal of Materials Research, 2018, 28, 261-267.	0.2	1
124	Photoelectrochemical Behavior of Cu ₂ O and Its Passivation Effect. Korean Journal of Materials Research, 2019, 29, 1-6.	0.2	1
125	Enhanced detection sensitivity through enzyme-induced precipitate accumulation in LSPR-active nano-valleys. RSC Advances, 2022, 12, 15652-15657.	3.6	1
126	Next-Generation Electrocatalysts. , 2017, , 713-741.		0

#	Article	lF	CITATIONS
127	Lithiumâ€Sulfur Batteries: The Importance of Confined Sulfur Nanodomains and Adjoining Electron Conductive Pathways in Subreaction Regimes of Liâ€S Batteries (Adv. Energy Mater. 19/2017). Advanced Energy Materials, 2017, 7, .	19.5	0
128	Fabrication and H2S Sensing Property of Nickel Oxide and Nickel Oxide-Carbon Nanotube Composite. Korean Journal of Materials Research, 2018, 28, 466-473.	0.2	0
129	Communication—Polysulfide-Induced Chemical Capacity Loss in Li-S Batteries. Journal of the Electrochemical Society, 0, , .	2.9	0