
Qingzhong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Acetone/Water Binary Solvent to Enhance the Stability and Bioavailability of Spray Dried Enzalutamide/HPMC-AS Solid Dispersions. Journal of Pharmaceutical Sciences, 2021, 110, 1160-1171.	1.6	9
2	Design, synthesis and biological evaluation of pyridyl substituted benzoxazepinones as potent and selective inhibitors of aldosterone synthase. Chinese Chemical Letters, 2021, 32, 2327-2332.	4.8	3
3	Chimera induced protein degradation: PROTACs and beyond. European Journal of Medicinal Chemistry, 2020, 206, 112494.	2.6	10
4	Benzophenones as xanthone-open model CYP11B1 inhibitors potentially useful for promoting wound healing. Bioorganic Chemistry, 2019, 86, 401-409.	2.0	10
5	Pharmaceutical Inhibition of Neddylation as Promising Treatments for Various Cancers. Current Topics in Medicinal Chemistry, 2019, 19, 1059-1069.	1.0	8
6	Accelerated skin wound healing by selective 11β-Hydroxylase (CYP11B1) inhibitors. European Journal of Medicinal Chemistry, 2018, 143, 591-597.	2.6	10
7	Lead Optimization Generates CYP11B1 Inhibitors of Pyridylmethyl Isoxazole Type with Improved Pharmacological Profile for the Treatment of Cushing's Disease. Journal of Medicinal Chemistry, 2017, 60, 5086-5098.	2.9	22
8	Drifting of heme-coordinating group in imidazolylmethylxanthones leading to improved selective inhibition of CYP11B1. European Journal of Medicinal Chemistry, 2017, 139, 60-67.	2.6	7
9	Therapeutic compounds for Cushing's syndrome: a patent review (2012-2016). Expert Opinion on Therapeutic Patents, 2016, 26, 1307-1323.	2.4	5
10	Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis. Biochemical and Biophysical Research Communications, 2016, 477, 1005-1010.	1.0	31
11	Targeting Steroidogenic Cytochromes P450 (CYPs) with 6 ubstituted 1â€Imidazolylmethylxanthones. ChemMedChem, 2016, 11, 1770-1777.	1.6	5
12	Exploiting the Chromone Scaffold for the Development of Inhibitors of Corticosteroid Biosynthesis. Journal of Medicinal Chemistry, 2016, 59, 2468-2477.	2.9	21
13	Discovery of Triazole CYP11B2 Inhibitors with in Vivo Activity in Rhesus Monkeys. ACS Medicinal Chemistry Letters, 2015, 6, 861-865.	1.3	17
14	Identification of 4-(4-nitro-2-phenethoxyphenyl)pyridine as a promising new lead for discovering inhibitors of both human and rat 11β-Hydroxylase. European Journal of Medicinal Chemistry, 2015, 96, 139-150.	2.6	13
15	Novel Pyridyl Substituted 4,5-Dihydro-[1,2,4]triazolo[4,3- <i>a</i>]quinolines as Potent and Selective Aldosterone Synthase Inhibitors with Improved in Vitro Metabolic Stability. Journal of Medicinal Chemistry, 2015, 58, 2530-2537.	2.9	26
16	Heteroatom insertion into 3,4-dihydro-1H-quinolin-2-ones leads to potent and selective inhibitors of human and rat aldosterone synthase. European Journal of Medicinal Chemistry, 2015, 90, 788-796.	2.6	22
17	1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols: A new class of potent and selective aldosterone synthase inhibitors. European Journal of Medicinal Chemistry, 2015, 89, 597-605.	2.6	20

18 The Renaissance of CYP17 Inhibitors for the Treatment of Prostate Cancer. , 2014, , 319-356.

3

QINGZHONG HU

#	Article	IF	CITATIONS
19	Aldosterone Synthase Inhibitors as Promising Treatments for Mineralocorticoid Dependent Cardiovascular and Renal Diseases. Journal of Medicinal Chemistry, 2014, 57, 5011-5022.	2.9	54
20	CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nature Reviews Urology, 2014, 11, 32-42.	1.9	132
21	Potent 11β-Hydroxylase Inhibitors with Inverse Metabolic Stability in Human Plasma and Hepatic S9 Fractions To Promote Wound Healing. Journal of Medicinal Chemistry, 2014, 57, 7811-7817.	2.9	22
22	Novel Pyridyl- or Isoquinolinyl-Substituted Indolines and Indoles as Potent and Selective Aldosterone Synthase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 5179-5189.	2.9	48
23	Highly Potent and Selective Nonsteroidal Dual Inhibitors of CYP17/CYP11B2 for the Treatment of Prostate Cancer To Reduce Risks of Cardiovascular Diseases. Journal of Medicinal Chemistry, 2013, 56, 6101-6107.	2.9	40
24	Cushing's Syndrome: Development of Highly Potent and Selective CYP11B1 Inhibitors of the (Pyridylmethyl)pyridine Type. Journal of Medicinal Chemistry, 2013, 56, 6022-6032.	2.9	53
25	Hits identified in library screening demonstrate selective CYP17A1 lyase inhibition. Journal of Steroid Biochemistry and Molecular Biology, 2013, 134, 75-79.	1.2	15
26	Unexpected results of a SNAr-reaction. A novel synthetic approach to 1-arylthio-2-naphthols. Tetrahedron Letters, 2013, 54, 6615-6618.	0.7	2
27	Tetrahydropyrroloquinolinone Type Dual Inhibitors of Aromatase/Aldosterone Synthase as a Novel Strategy for Breast Cancer Patients with Elevated Cardiovascular Risks. Journal of Medicinal Chemistry, 2013, 56, 460-470.	2.9	51
28	Modulation of Cytochromes P450 with Xanthone-Based Molecules: From Aromatase to Aldosterone Synthase and Steroid 11β-Hydroxylase Inhibition. Journal of Medicinal Chemistry, 2013, 56, 1723-1729.	2.9	39
29	Drug discovery for breast cancer and co-instantaneous cardiovascular disease: what is the future?. Future Medicinal Chemistry, 2013, 5, 359-362.	1.1	11
30	Recent Progress in Pharmaceutical Therapies for Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2013, 14, 13958-13978.	1.8	45
31	Synthesis and biological evaluation of imidazolylmethylacridones as cytochrome P-450 enzymes inhibitors. MedChemComm, 2012, 3, 663.	3.5	27
32	Novel Imidazol-1-ylmethyl Substituted 1,2,5,6-Tetrahydropyrrolo[3,2,1- <i>ij</i>]quinolin-4-ones as Potent and Selective CYP11B1 Inhibitors for the Treatment of Cushing's Syndrome. Journal of Medicinal Chemistry, 2012, 55, 6629-6633.	2.9	63
33	Selective Dual Inhibitors of CYP19 and CYP11B2: Targeting Cardiovascular Diseases Hiding in the Shadow of Breast Cancer. Journal of Medicinal Chemistry, 2012, 55, 7080-7089.	2.9	51
34	3-Pyridyl Substituted Aliphatic Cycles as CYP11B2 Inhibitors: Aromaticity Abolishment of the Core Significantly Increased Selectivity over CYP1A2. PLoS ONE, 2012, 7, e48048.	1.1	23
35	Replacement of Imidazolyl by Pyridyl in Biphenylmethylenes Results in Selective CYP17 and Dual CYP17/CYP11B1 Inhibitors for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 2010, 53, 5749-5758.	2.9	50
36	The Role of Fluorine Substitution in Biphenyl Methylene Imidazoleâ€Type CYP17 Inhibitors for the Treatment of Prostate Carcinoma. ChemMedChem, 2010, 5, 899-910.	1.6	35

QINGZHONG HU

#	Article	IF	CITATIONS
37	Isopropylidene Substitution Increases Activity and Selectivity of Biphenylmethylene 4-Pyridine Type CYP17 Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 5049-5053.	2.9	69
38	Steroidogenic cytochrome P450 (CYP) enzymes as drug targets: Combining substructures of known CYP inhibitors leads to compounds with different inhibitory profile. Comptes Rendus Chimie, 2009, 12, 1117-1126.	0.2	22
39	Novel CYP17 inhibitors: Synthesis, biological evaluation, structure–activity relationships and modelling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls. European Journal of Medicinal Chemistry, 2009, 44, 2765-2775.	2.6	63
40	CYP17 Inhibitors. Annulations of Additional Rings in Methylene Imidazole Substituted Biphenyls: Synthesis, Biological Evaluation and Molecular Modelling. Archiv Der Pharmazie, 2008, 341, 597-609.	2.1	24
41	Synthesis, biological evaluation and molecular modelling studies of methyleneimidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17). Part I: Heterocyclic modifications of the core structure. Bioorganic and Medicinal Chemistry, 2008, 16, 1992-2010.	1.4	76
42	Synthesis, biological evaluation, and molecular modeling studies of methylene imidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17)—Part II: Core rigidification and influence of substituents at the methylene bridge. Bioorganic and Medicinal Chemistry, 2008, 16, 7715-7727.	1.4	58