Fujie Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664481/publications.pdf

Version: 2024-02-01

		70961	34900
121	9,802	41	98
papers	citations	h-index	g-index
158	158	158	6077
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enamine-Based Organocatalysis with Proline and Diamines:  The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Dielsâ°'Alder Reactions. Accounts of Chemical Research, 2004, 37, 580-591.	7.6	1,330
2	De Novo Computational Design of Retro-Aldol Enzymes. Science, 2008, 319, 1387-1391.	6.0	1,031
3	Organocatalytic Direct Asymmetric Aldol Reactions in Water. Journal of the American Chemical Society, 2006, 128, 734-735.	6.6	642
4	Organocatalytic Direct Michael Reaction of Ketones and Aldehydes with \hat{l}^2 -Nitrostyrene in Brine. Journal of the American Chemical Society, 2006, 128, 4966-4967.	6.6	438
5	A Highly Enantioselective Route to Either Enantiomer of Both \hat{l}_{\pm} - and \hat{l}^2 -Amino Acid Derivatives. Journal of the American Chemical Society, 2002, 124, 1866-1867.	6.6	367
6	Direct Asymmetric Organocatalytic Michael Reactions of $\hat{l}_{\pm}, \hat{l}_{\pm}$ -Disubstituted Aldehydes with \hat{l}^2 -Nitrostyrenes for the Synthesis of Quaternary Carbon-Containing Products. Organic Letters, 2004, 6, 2527-2530.	2.4	317
7	Direct Catalytic Asymmetric Synthesis ofanti-1,2-Amino Alcohols andsyn-1,2-Diols through Organocatalyticanti-Mannich andsyn-Aldol Reactions. Journal of the American Chemical Society, 2007, 129, 288-289.	6.6	308
8	Direct Asymmetricanti-Mannich-Type Reactions Catalyzed by a Designed Amino Acid. Journal of the American Chemical Society, 2006, 128, 1040-1041.	6.6	303
9	The Direct Organocatalytic Asymmetric Mannich Reaction:Â Unmodified Aldehydes as Nucleophiles. Journal of Organic Chemistry, 2003, 68, 9624-9634.	1.7	275
10	Synthesis ofî ² -Hydroxyaldehydes with Stereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol Reactions. Angewandte Chemie - International Edition, 2004, 43, 2420-2423.	7.2	240
11	Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chemical Communications, 2004, , 1762.	2.2	201
12	Amine-catalyzed direct Dielsâ \in Alder reactions of \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones with nitro olefins. Tetrahedron Letters, 2002, 43, 3817-3820.	0.7	168
13	Catalysis of 3-Pyrrolidinecarboxylic Acid and Related Pyrrolidine Derivatives in Enantioselective <i>anti</i> -Mannich-Type Reactions:  Importance of the 3-Acid Group on Pyrrolidine for Stereocontrol. Journal of the American Chemical Society, 2008, 130, 875-886.	6.6	159
14	3-Pyrrolidinecarboxylic Acid for Direct Catalytic Asymmetricanti-Mannich-Type Reactions of Unmodified Ketones. Journal of the American Chemical Society, 2006, 128, 9630-9631.	6.6	158
15	Direct Organocatalytic Asymmetric Aldol Reactions of α-Amino Aldehydes:  Expedient Syntheses of Highly Enantiomerically Enriched anti-β-Hydroxy-α-amino Acids. Organic Letters, 2004, 6, 3541-3544.	2.4	145
16	A Way to Highly Enantiomerically Enriched aza-Morita–Baylis–Hillman–Type Products. Angewandte Chemie - International Edition, 2007, 46, 1878-1880.	7.2	139
17	Expedient Synthesis of Chiral 1,2- and 1,4-Diamines:  Protecting Group Dependent Regioselectivity in Direct Organocatalytic Asymmetric Mannich Reactions. Organic Letters, 2006, 8, 2839-2842.	2.4	124
18	The Scope of the Direct Proline-Catalyzed Asymmetric Addition of Ketones to Imines. Advanced Synthesis and Catalysis, 2004, 346, 1131-1140.	2.1	123

#	Article	IF	Citations
19	Dihydroxyacetone Variants in the Organocatalytic Construction of Carbohydrates:  Mimicking Tagatose and Fuculose Aldolases. Journal of Organic Chemistry, 2006, 71, 3822-3828.	1.7	117
20	Mimicking Fructose and Rhamnulose Aldolases: Organocatalyticsyn-Aldol Reactions with Unprotected Dihydroxyacetone. Angewandte Chemie - International Edition, 2007, 46, 5572-5575.	7.2	114
21	Rapid Fluorescent Screening for Bifunctional Amineâ^'Acid Catalysts:  Efficient Syntheses of Quaternary Carbon-Containing Aldols under Organocatalysis. Organic Letters, 2003, 5, 4369-4372.	2.4	112
22	Mimicking Aldolases through Organocatalysis: <i>syn</i> -Selective Aldol Reactions with Protected Dihydroxyacetone. Organic Letters, 2007, 9, 3445-3448.	2.4	100
23	Pipecolic Acid-Catalyzed Direct Asymmetric Mannich Reactions. Organic Letters, 2006, 8, 811-814.	2.4	92
24	Catalytic Enantioselective Formal Heteroâ€Diels–Alder Reactions of Enones with Isatins to Give Spirooxindole Tetrahydropyranones. Chemistry - A European Journal, 2013, 19, 6213-6216.	1.7	90
25	One-Pot Asymmetric Synthesis of β-Cyanohydroxymethyl α-Amino Acid Derivatives:  Formation of Three Contiguous Stereogenic Centers. Organic Letters, 2002, 4, 4519-4522.	2.4	86
26	Crystallographic Evidence for Water-assisted Photo-induced Peptide Cleavage in the Stony Coral Fluorescent Protein Kaede. Journal of Molecular Biology, 2007, 372, 918-926.	2.0	81
27	Catalytic Antibodies as Designer Proteases and Esterases. Chemical Reviews, 2002, 102, 4885-4906.	23.0	80
28	Rapid analysis of solvent effects on enamine formation by fluorescence: how might enzymes facilitate enamine chemistry with primary amines?. Tetrahedron Letters, 2004, 45, 325-328.	0.7	74
29	Correlation between Antigen-Combining-Site Structures and Functions within a Panel of Catalytic Antibodies Generated against a Single Transition State Analog. Journal of the American Chemical Society, 1995, 117, 6199-6209.	6.6	68
30	Development of Small Designer Aldolase Enzymes: Catalytic Activity, Folding, and Substrate Specificityâ€. Biochemistry, 2005, 44, 7583-7592.	1.2	68
31	Relaxing Substrate Specificity in Antibody-Catalyzed Reactions:  Enantioselective Hydrolysis of N-Cbz-Amino Acid Esters. Journal of the American Chemical Society, 1996, 118, 2332-2339.	6.6	67
32	Fluorescent Detection of Carbonâ^'Carbon Bond Formation. Journal of the American Chemical Society, 2003, 125, 8523-8528.	6.6	65
33	Direct Observation of an Enamine Intermediate in Amine Catalysis. Journal of the American Chemical Society, 2009, 131, 18206-18207.	6.6	62
34	The Origin of Enantioselectivity in Aldolase Antibodies: Crystal Structure, Site-directed Mutagenesis, and Computational Analysis. Journal of Molecular Biology, 2004, 343, 1269-1280.	2.0	61
35	Reconstructing Aldolase Antibodies to Alter Their Substrate Specificity and Turnover. Journal of the American Chemical Society, 2000, 122, 4835-4836.	6.6	53
36	1,1'-Binaphthalene-2,2'-diol as a Chiral Auxiliary. Diastereoselective Alkylation of Binaphthyl Esters, Complex-Induced Proximity Effects in Enolate Formation, and One-Step Synthesis of an Optically Active .betaSubstituted Ketone. Journal of the American Chemical Society, 1995, 117, 12159-12171.	6.6	49

#	Article	IF	CITATIONS
37	Design and Use of Fluorogenic Aldehydes for Monitoring the Progress of Aldehyde Transformations. Journal of the American Chemical Society, 2004, 126, 3692-3693.	6.6	49
38	A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1.8 Å resolution. Journal of Molecular Biology, 1998, 281, 501-511.	2.0	45
39	Using antibody catalysis to study the outcome of multiple evolutionary trials of a chemical task. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3878-3883.	3.3	44
40	Binaphthol as a chiral auxiliary. Asymmetrical alkylation of arylacetic acid. Tetrahedron Letters, 1989, 30, 2825-2828.	0.7	41
41	Phage display selection of peptides possessing aldolase activity. Chemical Communications, 2001, , 769-770.	2.2	41
42	Formal (4+1) Cycloaddition and Enantioselective Michael–Henry Cascade Reactions To Synthesize Spiro[4,5]decanes and Spirooxindole Polycycles. Angewandte Chemie - International Edition, 2017, 56, 5853-5857.	7.2	40
43	Reactive immunization: a unique approach to catalytic antibodies. Journal of Immunological Methods, 2002, 269, 67-79.	0.6	39
44	A common ancestry for multiple catalytic antibodies generated against a single transition-state analog. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6045-6049.	3.3	38
45	A Modular Assembly Strategy for Improving the Substrate Specificity of Small Catalytic Peptides. Journal of the American Chemical Society, 2002, 124, 3510-3511.	6.6	38
46	Organocatalytic <i>anti</i> hannich Reactions with Dihydroxyacetone and Acyclic Dihydroxyacetone Derivatives: A Facile Route to Amino Sugars. Advanced Synthesis and Catalysis, 2008, 350, 791-796.	2.1	37
47	Catalytic asymmetric hetero-Diels–Alder reactions of enones with isatins to access functionalized spirooxindole tetrahydropyrans: scope, derivatization, and discovery of bioactives. Organic and Biomolecular Chemistry, 2016, 14, 1777-1783.	1.5	36
48	Evolution of Aldolase Antibodies in Vitro: Correlation of Catalytic Activity and Reaction-based Selection. Journal of Molecular Biology, 2004, 335, 1007-1018.	2.0	33
49	Imines that React with Phenols in Water over a Wide pH Range. Journal of Organic Chemistry, 2008, 73, 8669-8672.	1.7	33
50	A Fluorogenic Aldehyde Bearing a 1,2,3-Triazole Moiety for Monitoring the Progress of Aldol Reactions. Journal of Organic Chemistry, 2009, 74, 2417-2424.	1.7	33
51	Amine-catalyzed Michael reactions of an aminoaldehyde derivative to nitroolefins. Tetrahedron Letters, 2007, 48, 693-696.	0.7	32
52	Synthesis and evaluation of a cyclic imine derivative conjugated to a fluorescent molecule for labeling of proteins. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1210-1213.	1.0	32
53	Catalytic single-chain antibodies possessing \hat{l}^2 -lactamase activity selected from a phage displayed combinatorial library using a mechanism-based inhibitor. Tetrahedron Letters, 1999, 40, 8063-8066.	0.7	31
54	Reactionâ€Based Mechanistic Investigations of Asymmetric Heteroâ€Diels–Alder Reactions of Enones with Isatins Catalyzed by Amineâ€Based Threeâ€Component Catalyst Systems. Asian Journal of Organic Chemistry, 2016, 5, 153-161.	1.3	29

#	Article	IF	Citations
55	Fluorogenic Imines for Fluorescent Detection of Mannich-Type Reactions of Phenols in Water. Journal of Organic Chemistry, 2008, 73, 3964-3966.	1.7	28
56	Complex-induced proximity effects in enolate formation. Highly diastereoselective \hat{l}_{\pm} -methylation of binaphthyl esters of arylacetic acids Tetrahedron Letters, 1990, 31, 6553-6556.	0.7	25
57	Synthesis of 4-Substituted-Pyridine-2,6-dicarboxylic Acid Derivatives from Pyruvates and Aldehydes in One Pot. Heterocycles, 2017, 95, 587.	0.4	25
58	A lipid-coated catalytic antibody in water-miscible organic solvents. Tetrahedron, 1995, 51, 7673-7680.	1.0	23
59	Development of a Small Peptide Tag for Covalent Labeling of Proteins. Bioconjugate Chemistry, 2007, 18, 1318-1324.	1.8	23
60	Thiazolium-dependent catalytic antibodies produced using a covalent modification strategyâ€. Chemical Communications, 1999, , 1383-1384.	2.2	21
61	Visualizing antibody-Catalyzed retro-Aldol-Retro-Michael reactions. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2983-2986.	1.0	21
62	C-Glycosidation of Unprotected Di- and Trisaccharide Aldopyranoses with Ketones Using Pyrrolidine-Boric Acid Catalysis. Journal of Organic Chemistry, 2018, 83, 4581-4597.	1.7	20
63	Enamine Catalysis: Aldol and Mannich-Type Reactions. , 0, , 19-55.		19
64	Aldol Reactions of Ketone Donors with Aryl Trifluoromethyl Ketone Acceptors Catalyzed by 1,8â€Diazabicyclo[5.4.0]undecâ€7â€ene (DBU) for Concise Access to Aryl―and Trifluoromethyl―Substituted Tertiary Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 3458-3462.	2.1	19
65	Binaphthol as a chiral auxilliary: diastereoselective alkylation of binaphthyl esters of \hat{l}_{\pm} , \hat{l}_{\pm} -unsaturated carboxylic acids. Tetrahedron Letters, 1991, 32, 7281-7282.	0.7	17
66	Pyridoxal-mediated abzyme system for aldol and retro-aldol reactions. Tetrahedron Letters, 1998, 39, 5057-5060.	0.7	17
67	Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation–oxa-Michael reactions with unactivated ketones. Organic and Biomolecular Chemistry, 2016, 14, 259-264.	1.5	17
68	Direct Catalytic Asymmetric Synthesis of Oxindole-Derived \hat{l} -Hydroxy- \hat{l} -ketoesters by Aldol Reactions. Organic Letters, 2020, 22, 6-10.	2.4	17
69	One-pot synthesis of polysubstituted 3-acylpyrroles by cooperative catalysis. Organic and Biomolecular Chemistry, 2014, 12, 5822-5826.	1.5	16
70	Synthesis of Furanose Spirooxindoles via 1,8â€Diazabicyclo[5.4.0]undecâ€₹â€ene (DBU)â€Catalyzed Aldol Reactions of a Pyruvic Aldehyde Derivative. Asian Journal of Organic Chemistry, 2014, 3, 391-394.	1.3	16
71	Reactions of pyruvates: organocatalytic synthesis of functionalized dihydropyrans in one pot and further transformations to functionalized carbocycles and heterocycles. Chemical Communications, 2014, 50, 14881-14884.	2.2	16
72	Enantioselective Direct <i>anti</i> -Selective Mannich-type Reactions Catalyzed by 3-Pyrrolidinecarboxylic Acid in the Presence of Potassium Carbonate: Addition of Potassium Carbonate Improves Enantioselectivities. Organic Letters, 2020, 22, 4542-4546.	2.4	16

#	Article	IF	Citations
73	Stereochemistry of the enolate from methyl phenylacetate. Tetrahedron Letters, 1992, 33, 7885-7888.	0.7	14
74	Intramolecular Mannich and Michael Annulation Reactions of Lactam Derivatives Bearing Enals To Afford Bicyclic N-Heterocycles. Organic Letters, 2019, 21, 8444-8448.	2.4	14
75	Switching Electrophile Intermediates to Nucleophiles: Michael and Oxa-Diels–Alder Reactions to Afford Polyoxy-Functionalized Piperidine Derivatives with Tetrasubstituted Carbon. Organic Letters, 2020, 22, 2751-2755.	2.4	14
76	Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol–Aldol Annulation of Pyruvate Derivatives with Cyclohexaneâ€1,3â€Diones to Afford Functionalized Decalins. Angewandte Chemie - International Edition, 2018, 57, 13298-13301.	7.2	13
77	Formal (4+1) Cycloaddition and Enantioselective Michael–Henry Cascade Reactions To Synthesize Spiro[4,5]decanes and Spirooxindole Polycycles. Angewandte Chemie, 2017, 129, 5947-5951.	1.6	12
78	Determination of Relative Frequency of Carbanion Formation at \hat{l}_{\pm} -Positions of Ketones under Aldol Reaction Catalysis Conditions. Organic Letters, 2017, 19, 3803-3806.	2.4	12
79	Dynamic Kinetic Asymmetric Transformation of Racemic Diastereomers: Diastereo―and Enantioconvergent Michael–Henry Reactions to Afford Spirooxindoles Bearing Furanâ€Fused Rings. Angewandte Chemie - International Edition, 2021, 60, 21256-21260.	7.2	11
80	Control of Reactions of Pyruvates by Catalysts: Direct Enantioselective Mannich Reactions of Pyruvates Catalyzed by Amine-based Catalyst Systems. Organic Letters, 2022, 24, 1853-1858.	2.4	11
81	Fluorogenic probes for chemical transformations: 9-anthracene derivatives for monitoring reaction progress by an increase in fluorescence. Tetrahedron Letters, 2013, 54, 4306-4308.	0.7	10
82	Catalytic enantioselective oxa-hetero-Diels–Alder reactions of enones with aryl trifluoromethyl ketones. RSC Advances, 2016, 6, 61454-61457.	1.7	10
83	Aldolase Antibody Activation of Prodrugs of Potent Aldehyde-Containing Cytotoxics for Selective Chemotherapy. Chemistry - A European Journal, 2004, 10, 5467-5472.	1.7	9
84	Fluorogenic probes for aldol reactions: tuning of fluorescence using π-conjugation systems. Tetrahedron Letters, 2014, 55, 74-78.	0.7	9
85	Discovery of SOAT2 inhibitors from synthetic small molecules. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5899-5901.	1.0	9
86	Mannich Reactions of Carbohydrate Derivatives with Ketones To Afford Polyoxy-Functionalized Piperidines. Organic Letters, 2019, 21, 1165-1169.	2.4	9
87	Control of Chemical Reactions by Using Molecules that Buffer Nonâ€aqueous Solutions. Chemistry - A European Journal, 2020, 26, 222-229.	1.7	9
88	Intramolecular Formal $[4+2]$ Cycloadditions: Synthesis of Spiro Isoindolinone Derivatives and Related Molecules. Organic Letters, 2021, 23, 1874-1879.	2.4	9
89	Control of function of a small peptide by a protein. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4059-4062.	1.0	7
90	Fluorogenic aldehydes bearing arylethynyl groups: turn-on aldol reaction sensors for evaluation of organocatalysis in DMSO. Tetrahedron Letters, 2014, 55, 1946-1948.	0.7	6

#	Article	IF	Citations
91	Dynamic stereoselective annulation via aldol-oxa-cyclization cascade reaction to afford spirooxindole pyran polycycles. Communications Chemistry, 2019, 2, .	2.0	6
92	Intramolecular Oxa-Michael Reactions of Aldols Generated from Enones and Isatins to Afford Spirooxindole Tetrahydropyrans. Heterocycles, 2020, 101, 339.	0.4	6
93	Development of protein, peptide, and small molecule catalysts using catalysis-based selection strategies. Chemical Record, 2005, 5, 276-285.	2.9	5
94	Enamine-based Reactions Using Organocatalysts: from Aldolase Antibodies to Small Amino Acid and Amine Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2005, 63, 709-721.	0.0	5
95	Substituent-dependent reactivity in aldehyde transformations: 4-(phenylethynyl)benzaldehydes versus simple benzaldehydes. Tetrahedron, 2013, 69, 4098-4104.	1.0	5
96	Synthesis of pyrrolidine-3-carboxylic acid derivatives <i>via</i> asymmetric Michael addition reactions of carboxylate-substituted enones. Organic and Biomolecular Chemistry, 2017, 15, 6089-6092.	1.5	5
97	Organocatalytic diastereo- and enantioselective oxa-hetero-Diels–Alder reactions of enones with aryl trifluoromethyl ketones for the synthesis of trifluoromethyl-substituted tetrahydropyrans. Organic and Biomolecular Chemistry, 2021, 19, 9242-9250.	1.5	5
98	Reactive Immunization: A Unique Approach to Aldolase Antibodies. , 2005, , 304-335.		4
99	Aldol reactions of 1,2-diketones catalyzed by amines to afford furanose derivatives. Tetrahedron Letters, 2015, 56, 735-738.	0.7	4
100	Catalytic Enantioselective Oxa-Hetero-Diels-Alder Reactions of Enones with Aryl Trifluoromethyl Ketones: Synthesis of Tetrahydropyranones. Heterocycles, 2021, 103, 198.	0.4	4
101	Anti-formyl peptide antibodies. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1943-1945.	1.0	3
102	Selection of phage-displayed peptides that bind to a particular ligand-bound antibody. Bioorganic and Medicinal Chemistry, 2008, 16, 5926-5931.	1.4	3
103	Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol–Aldol Annulation of Pyruvate Derivatives with Cyclohexaneâ€1,3â€Diones to Afford Functionalized Decalins. Angewandte Chemie, 2018, 130, 13482-13485.	1.6	3
104	Antibody-catalyzed aminolysis of a chloropyrimidine derivative Electronic supplementary information (ESI) available: (1) synthesis of the hapten, (2) preparation of hapten conjugate, and (3) HPLC assay and kinetics. See http://www.rsc.org/suppdata/cc/b4/b403672g/. Chemical Communications, 2004, , 1242.	2.2	2
105	Organocatalytic Approaches to Enantioenriched β-Amino Acids. , 2005, , 195-213.		2
106	Dynamic Kinetic Asymmetric Transformation of Racemic Diastereomers: Diastereo―and Enantioconvergent Michael–Henry Reactions to Afford Spirooxindoles Bearing Furanâ€Fused Rings. Angewandte Chemie, 2021, 133, 21426-21430.	1.6	2
107	Catalytic Enantioselective Construction of Decalin Derivatives by Dynamic Kinetic Desymmetrization of C2-Symmetric Derivatives through Aldol–Aldol Annulation. Journal of Organic Chemistry, 2022, 87, 8151-8157.	1.7	2
108	The Direct Organocatalytic Asymmetric Mannich Reaction: Unmodified Aldehydes as Nucleophiles ChemInform, 2004, 35, no.	0.1	1

#	Article	IF	CITATIONS
109	Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels—Alder Reactions. ChemInform, 2004, 35, no.	0.1	1
110	7ÂÂCatalytic antibodies. Annual Reports on the Progress of Chemistry Section C, 2005, 101, 202.	4.4	1
111	Detection of enantiomers of chiral primary amines by 1H NMR analysis via enamine formation with an enantiopure \hat{l}^3 -position aldol product of a \hat{l}^2 -keto ester. Tetrahedron Letters, 2018, 59, 2248-2250.	0.7	1
112	Reactions of Pyruvate-Derived Dihydropyrans with Formaldehyde: Synthesis of Functionalized Furopyrans and Related Products. Heterocycles, 2018, 97, 569.	0.4	1
113	Catalytic Antibodies as Designer Proteases and Esterases. ChemInform, 2003, 34, no.	0.1	0
114	Rapid Fluorescent Screening for Bifunctional Amine—Acid Catalysts: Efficient Syntheses of Quaternary Carbon-Containing Aldols under Organocatalysis ChemInform, 2004, 35, no.	0.1	0
115	Synthesis of \hat{l}^2 -Hydroxyaldehydes with Stereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol Reactions ChemInform, 2004, 35, no.	0.1	0
116	Direct Asymmetric Organocatalytic Michael Reactions of $\hat{l}\pm,\hat{l}\pm$ -Disubstituted Aldehydes with \hat{l}^2 -Nitrostyrenes for the Synthesis of Quaternary Carbon-Containing Products ChemInform, 2004, 35, no.	0.1	0
117	Direct Organocatalytic Asymmetric Aldol Reactions of ?-Amino Aldehydes: Expedient Syntheses of Highly Enantiomerically Enriched anti-?-Hydroxy-?-amino Acids ChemInform, 2005, 36, no.	0.1	0
118	Antibody-Catalyzed Aldol Reactions. ChemInform, 2005, 36, no.	0.1	0
119	Enamine-Based Reactions Using Organocatalysts: From Aldolase Antibodies to Small Amino Acid and Amine Catalysts. ChemInform, 2005, 36, no.	0.1	0
120	Enamine-Based Reactions: Strategies for the Development of Organocatalysts and Catalyzed Reactions. Journal of the Society of Japanese Women Scientists, 2009, 10, 1-9.	0.0	0
121	Varying the Directionality of Protein Catalysts for Aldol and Retroâ€aldol Reactions. ChemBioChem, 2021, , .	1.3	0