Boris Apter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644440/publications.pdf

Version: 2024-02-01

		687220	642610
50	572	13	23
papers	citations	h-index	g-index
50	50	50	671
all docs	docs citations	times ranked	citing authors
an doco	doco citations	imics function	oring authors

#	Article	IF	CITATIONS
1	On the fringing-field effect in liquid-crystal beam-steering devices. Applied Optics, 2004, 43, 11.	2.1	115
2	Simulation and experimental investigation of optical transparency in gold island films. Optics Express, 2013, 21, 4126.	1.7	64
3	Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 1996.	0.8	38
4	Peptide Integrated Optics. Advanced Materials, 2018, 30, 1705776.	11.1	35
5	Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips. Small, 2018, 14, e1801147.	5.2	34
6	Compensation of Coulomb Blocking and Energy Transfer in the Current Voltage Characteristic of Molecular Conduction Junctions. Nano Letters, 2012, 12, 2228-2232.	4.5	31
7	Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes. Acta Biomaterialia, 2016, 30, 72-77.	4.1	27
8	Bioinspired Amyloid Nanodots with Visible Fluorescence. Advanced Optical Materials, 2019, 7, 1801400.	3.6	26
9	Preparation and study of doped ZnS thin films. Microelectronic Engineering, 2017, 170, 39-43.	1.1	20
10	In-situ investigation of optical transmittance in metal thin films. Thin Solid Films, 2015, 591, 261-266.	0.8	19
11	Longâ€Range Fluorescence Propagation in Amyloidogenic βâ€Sheet Films and Fibers. Advanced Optical Materials, 2020, 8, 2000056.	3.6	19
12	Light absorption enhancement in thin silicon film by embedded metallic nanoshells. Optics Letters, 2010, 35, 1139.	1.7	18
13	Fluorescence Phenomena in Amyloid and Amyloidogenic Bionanostructures. Crystals, 2020, 10, 668.	1.0	17
14	Effect of phonon-plasmon and surface plasmon polaritons on photoluminescence in quantum emitter and graphene deposited on polar crystals. Journal of Applied Physics, 2016, 120, 124308.	1.1	16
15	A CMOS/LCOS Image Transceiver Chip for Smart Goggle Applications. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14, 269-273.	5.6	10
16	Fold‧ensitive Visible Fluorescence in β‧heet Peptide Structures. Advanced Optical Materials, 2021, 9, 2002247.	3.6	10
17	Ring-type plasmon resonance in metallic nanoshells. Applied Optics, 2011, 50, 5457.	2.1	9
18	Peptide Optical waveguides. Journal of Peptide Science, 2017, 23, 95-103.	0.8	9

#	Article	IF	CITATIONS
19	Resolution improvement of surface plasmon-enhanced, liquid crystal spatial light modulator: Simulation studies. Optics Communications, 2008, 281, 4788-4792.	1.0	6
20	Light waveguiding in bioinspired peptide nanostructures. Journal of Peptide Science, 2019, 25, e3164.	0.8	6
21	Amplified spontaneous emission and gain in highly concentrated Rhodamine-doped peptide derivative. Scientific Reports, 2021, 11, 17609.	1.6	6
22	Experimental study of phase-step broadening by fringing fields in a three-electrode liquid-crystal cell. Applied Optics, 2005, 44, 2989.	2.1	4
23	Measuring Nanolayer Profiles of Various Materials by Evanescent Light Technique. Journal of Nanoscience and Nanotechnology, 2012, 12, 2668-2671.	0.9	4
24	Bioinspired materials: Physical properties governed by biological refolding. Applied Physics Reviews, 2022, 9, .	5.5	4
25	Simple method for controlled variation of liquid crystal cell thickness. Optical Engineering, 2004, 43, 3021.	0.5	3
26	<title>LC-beam steering device based on subwavelength diffractive optical element structure</title> ., 2001, 4294, 92.		2
27	Studies of fringing field effects in liquid crystal beam-steering devices. , 2005, , .		2
28	Combined blazed grating/Gires-Tournois resonator for liquid crystal beam switching. Journal of Lightwave Technology, 2006, 24, 962-969.	2.7	2
29	Design of integrated eye tracker-display device for head mounted systems. Proceedings of SPIE, 2009, , .	0.8	2
30	Light absorption enhancement in thin silicon film by embedded metallic nanoshells: erratum. Optics Letters, 2011, 36, 1239.	1.7	2
31	Modeling plasmonic efficiency enhancement in organic photovoltaics. Applied Optics, 2015, 54, 7957.	2.1	2
32	Photon Recycling Effect and Lossless Fluorescence Propagation in βâ€Sheet Peptide Fibers. Advanced Optical Materials, 2022, 10, 2102342.	3.6	2
33	Recent studies in LC devices and technology. , 2006, 6332, 105.		1
34	Computer simulation of liquid crystal spatial light modulator based on surface plasmon resonance. , 2007, , .		1
35	Experimental study of an ultrasmall pixel, one-dimensional liquid-crystal device. Applied Optics, 2008, 47, 6315.	2.1	1
36	Study of polyethylene nanolayers by evanescent light microscopy. Applied Physics A: Materials Science and Processing, 2011, 104, 997-1002.	1.1	1

#	Article	IF	Citations
37	Differential evanescent light intensity imaging of nanothin films: simulation of the scattered field. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2957-2960.	0.8	1
38	Non-Markovian theory of collective plasmon-molecule excitations in nanojunctions combined with classical electrodynamic simulations. , 2013 , , .		1
39	Optical properties of bio-inspired peptide nanotubes. , 2016, , .		1
40	Bioinspired Peptide-Based Photonic Integrated Devices. , 2018, , .		1
41	<title>LC-based subwavelength diffractive optical element structures for optical cross-connect applications /title>., 2001, , .</td><td></td><td>O</td></tr><tr><td>42</td><td>Electrooptical wide-angle beam deflector based on fringing-field-induced refractive inhomogeneity in a liquid crystal layer. , 0, , .</td><td></td><td>0</td></tr><tr><td>43</td><td>Electro-optical wide-angle beam deflection based on transversal-field-induced refractive inhomogeneity in a liquid crystal layer. , 2005, , .</td><td></td><td>0</td></tr><tr><td>44</td><td>A head-mounted, image transceiver-based, low vision aid. International Congress Series, 2005, 1282, 512-516.</td><td>0.2</td><td>0</td></tr><tr><td>45</td><td>Low vision goggles: optical design studies. , 2006, , .</td><td></td><td>O</td></tr><tr><td>46</td><td>Study of LSPR-enhanced absorption for solar cell applications: preliminary results., 2009,,.</td><td></td><td>0</td></tr><tr><td>47</td><td>Fast surface plasmon-polariton-based optical phase modulator. Proceedings of SPIE, 2009, , .</td><td>0.8</td><td>0</td></tr><tr><td>48</td><td>Optical emission spectroscopy of the sputtering process in the triode system. Radiation Effects and Defects in Solids, 2014, 169, 759-766.</td><td>0.4</td><td>0</td></tr><tr><td>49</td><td>Light propagation in peptide-based optical waveguides. , 2017, , .</td><td></td><td>0</td></tr><tr><td>50</td><td>Light-induced "plasmonic" properties of organic materials: surface polaritons, bistability and switching waves. , 2017, , .</td><td></td><td>0</td></tr></tbody></table></title>		