
Susilo Japip

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. Journal of Membrane Science, 2014, 467, 162-174.	4.1	238
2	Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Research, 2020, 173, 115557.	5.3	230
3	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	11.1	229
4	Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules. Advanced Materials, 2018, 30, 1705933.	11.1	190
5	From ultrafiltration to nanofiltration: Hydrazine cross-linked polyacrylonitrile hollow fiber membranes for organic solvent nanofiltration. Journal of Membrane Science, 2017, 542, 289-299.	4.1	102
6	One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers. Journal of Materials Chemistry A, 2019, 7, 3170-3178.	5.2	102
7	Molecularly Tuned Free Volume of Vapor Crossâ€Linked 6FDAâ€Durene/ZIFâ€71 MMMs for H ₂ /CO ₂ Separation at 150 °C. Advanced Materials, 2017, 29, 1603833.	11.1	98
8	Particle-Size Effects on Gas Transport Properties of 6FDA-Durene/ZIF-71 Mixed Matrix Membranes. Industrial & Engineering Chemistry Research, 2016, 55, 9507-9517.	1.8	96
9	Mixed matrix membranes containing MOFs for ethylene/ethane separation Part A: Membrane preparation and characterization. Journal of Membrane Science, 2013, 428, 445-453.	4.1	89
10	Graphene oxide (GO) laminar membranes for concentrating pharmaceuticals and food additives in organic solvents. Carbon, 2018, 130, 503-514.	5.4	84
11	Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nature Communications, 2022, 13, 500.	5.8	84
12	Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis. Nature Communications, 2020, 11, 1198.	5.8	77
13	Can Composite Janus Membranes with an Ultrathin Dense Hydrophilic Layer Resist Wetting in Membrane Distillation?. Environmental Science & Technology, 2020, 54, 12713-12722.	4.6	71
14	The encouraging improvement of polyamide nanofiltration membrane by cucurbiturilâ€based host–guest chemistry. AICHE Journal, 2020, 66, e16879.	1.8	64
15	Mixed matrix membranes containing MOFs for ethylene/ethane separation—Part B: Effect of Cu3BTC2 on membrane transport properties. Journal of Membrane Science, 2013, 428, 331-340.	4.1	61
16	Organic solvent resistant membranes made from a cross-linked functionalized polymer with intrinsic microporosity (PIM) containing thioamide groups. Chemical Engineering Journal, 2018, 353, 689-698.	6.6	61
17	Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549, 217-226.	4.1	57
18	Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration. Journal of Membrane Science, 2020, 601, 117948.	4.1	51

SUSILO JAPIP

#	Article	IF	CITATIONS
19	Infiltrating molecular gatekeepers with coexisting molecular solubility and 3D-intrinsic porosity into a microporous polymer scaffold for gas separation. Journal of Materials Chemistry A, 2020, 8, 6196-6209.	5.2	47
20	Green Design of Poly(<i>m</i> -Phenylene Isophthalamide)-Based Thin-Film Composite Membranes for Organic Solvent Nanofiltration and Concentrating Lecithin in Hexane. ACS Sustainable Chemistry and Engineering, 2018, 6, 10696-10705.	3.2	46
21	Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking. Journal of Membrane Science, 2016, 497, 248-258.	4.1	44
22	Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. Journal of Membrane Science, 2017, 534, 92-99.	4.1	40
23	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.	5.8	40
24	Fabrication of thin-film composite membranes for organic solvent nanofiltration by mixed monomeric polymerization on ionic liquid/water interfaces. Journal of Membrane Science, 2021, 636, 119551.	4.1	32
25	Reduced thermal rearrangement temperature via formation of zeolitic imidazolate framework (ZIF)-8-based nanocomposites for hydrogen purification. Separation and Purification Technology, 2019, 212, 965-973.	3.9	28
26	WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes. Journal of Membrane Science, 2019, 588, 117219.	4.1	27
27	Green Layerâ€byâ€Layer Method for the Preparation of Polyacrylonitrileâ€Supported Zinc Benzeneâ€1,4â€dicarboxylic Acid Membranes. ChemSusChem, 2018, 11, 2612-2619.	3.6	25
28	Hydroxyl-terminated poly(ethyleneimine) polymer enhanced ultrafiltration for boron removal. Separation and Purification Technology, 2019, 222, 214-220.	3.9	22
29	UiO-66-NH2 incorporated dual-layer hollow fibers made by immiscibility induced phase separation (I2PS) process for ethanol dehydration via pervaporation. Journal of Membrane Science, 2020, 595, 117571.	4.1	21
30	Thermally evolved and boron bridged graphene oxide (GO) frameworks constructed on microporous hollow fiber substrates for water and organic matters separation. Carbon, 2017, 123, 193-204.	5.4	19
31	The Role of Fluorinated Aryl Ether Moiety in Polyimide- <i>co</i> etherimide on Gas Transport Properties. Industrial & Engineering Chemistry Research, 2020, 59, 5315-5323.	1.8	18
32	Breaking through permeability–selectivity tradeâ€off of thinâ€film composite membranes assisted with crown ethers. AICHE Journal, 2021, 67, e17173.	1.8	17
33	Novel Cellulose Triacetate (CTA)/Cellulose Diacetate (CDA) Blend Membranes Enhanced by Amine Functionalized ZIF-8 for CO2 Separation. Polymers, 2021, 13, 2946.	2.0	14
34	Revitalize integrally skinned hollow fiber membranes with spatially impregnated 3D-macrocycles for organic solvent nanofiltration. Chemical Engineering Journal, 2021, 422, 130015.	6.6	13
35	Hydrogen storage in molecular clathrate cages under conditions of moderate pressure and ambient temperature. International Journal of Hydrogen Energy, 2018, 43, 19998-20003.	3.8	8
36	Double Cross-Linked POSS-Containing Thin Film Nanocomposite Hollow Fiber Membranes for Brackish Water Desalination via Reverse Osmosis. Industrial & Engineering Chemistry Research, 2020, 59, 22272-22280.	1.8	8

#	Article	IF	CITATIONS
37	Membrane Technology: Advanced Porous Materials in Mixed Matrix Membranes (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870355.	11.1	6