
Yih-Chien Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dielectric properties of Nd(Ti _{0.5} W _{0.5})O ₄ ceramics at microwave frequency for application in hybrid dielectric resonator antenna suitable for LTE/5G. Ferroelectrics, 2022, 586, 121-132.	0.6	1
2	Dielectric characteristics of complex perovskite ceramic at microwave frequencies for application in dielectric resonator antenna temperature sensor network. Journal of the Australian Ceramic Society, 2021, 57, 983-992.	1.9	2
3	A high-quality factor dielectric resonator antenna for use in a wireless high-temperature sensor. Ferroelectrics, Letters Section, 2020, 47, 40-49.	1.0	2
4	Influence of Co substitution on crystal structures, Raman spectroscopy, and microwave dielectric properties of Mg2SnO4 ceramics. Journal of the Australian Ceramic Society, 2020, 56, 1493-1499.	1.9	3
5	Microwave characteristics and microstructure of Zn2(Sn1â°xTix)O4 for use as a Yagi antenna. Journal of Materials Science: Materials in Electronics, 2020, 31, 18515-18523.	2.2	0
6	Dielectric characteristics of La(Mg0.5â^'xNixSn0.5)O3 ceramics at microwave frequency for application in sub-6ÂGHz patch array antenna. Journal of Materials Science: Materials in Electronics, 2020, 31, 3510-3518.	2.2	3
7	Dielectric Properties of (Mg(1-x)Cox)2SnO4 for Application in Dielectric Resonator Temperature Sensor. , 2019, , .		0
8	La(Mg _{0.5â^'} <i>_x</i> Me <i>_{x(Me = Ca, Sr) dielectric resonator antenna for use in a wireless high-temperature sensor. Journal of the Ceramic Society of Japan, 2019, 127, 617-626.}</i>	; 1.1	Sn <sub&g 1</sub&g
9	Microwave dielectric properties of Nd(Ti0.5â^'xZrx)W0.5O4 ceramics for application in antenna temperature sensor. Journal of Materials Science: Materials in Electronics, 2018, 29, 4717-4723.	2.2	7
10	A carbon monoxide interdigitated-capacitor gas sensor based upon a n-type Zn2SnO4 thin film. Journal of Materials Science: Materials in Electronics, 2018, 29, 1658-1663.	2.2	6
11	Growth and dielectric characterizations of zinc stannate thin films deposited by RF magnetron sputtering. Integrated Ferroelectrics, 2018, 192, 80-87.	0.7	6
12	Development of high quality factor microwave ceramics for application in wireless high temperature patch antenna sensor. Journal of Materials Science: Materials in Electronics, 2018, 29, 18432-18440.	2.2	3
13	Enhancement quality factor by Zr +4 substitution at B-site of ZnNiTiO 4 microwave ceramics. Ceramics International, 2017, 43, S301-S305.	4.8	2
14	Enhancement quality factor of ZnNiTiO4 microwave ceramics by substituting Ti4+ with Sn4+. Journal of Materials Science: Materials in Electronics, 2017, 28, 673-678.	2.2	3
15	Microstructures and dielectric properties of Zn2SnO4 thin films by sputtering from a ZnO doped ceramic target. Integrated Ferroelectrics, 2016, 176, 228-235.	0.7	3
16	Improving quality factor of Mg 2 SnO 4 ceramics by removing moisture content from starting raw materials. Ceramics International, 2016, 42, 9749-9751.	4.8	6
17	Microstructures and dielectric properties of inverse-spinel structure Zn2SnO4 thin films by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2016, 27, 2031-2035.	2.2	6
18	Effect of Ar/(Ar+O2) ratio on the microstructures and dielectric properties of Zn2SnO4 thin films by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2016, 27, 10562-10565.	2.2	0

#	Article	IF	CITATIONS
19	Effect of sintering temperature on microstructures and microwave dielectric properties of Ba2MgWO6 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 4259-4264.	2.2	15
20	Elucidating the microstructures and microwave dielectric properties of ZnNiTiO4 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 8356-8362.	2.2	4
21	Dielectric properties of Ba2Mg0.95Zn0.05WO6 ceramics at microwave frequency. Journal of Materials Science: Materials in Electronics, 2016, 27, 6979-6984.	2.2	4
22	Influence of Ca0.8Sr0.2TiO3 on the microwave dielectric properties of 1Âwt% Li2WO4-doped Zn2SnO4 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 1493-1499.	2.2	1
23	Influence of BaCu(B2O5) aid and sintering temperature on microstructures and microwave dielectric properties of inverse-spinel structure Zn2SnO4 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 7614-7620.	2.2	6
24	Influence of Ca _{0.8} Sr _{0.2} TiO ₃ on the Microstructures and Microwave Dielectric Properties of Nd _{0.96} Yb _{0.04} (Mg _{0.5} Sn _{0.5})O ₃ Ceramics. Ferroelectrics, Letters Section, 2015, 42, 1-9.	1.0	4
25	Influence of Li2WO4 aid and sintering temperature on microstructures and microwave dielectric properties of Zn2SnO4 ceramics. Ceramics International, 2015, 41, 5257-5262.	4.8	17
26	Effect of sintering temperature on microstructures and microwave dielectric properties of Zn2SnO4 ceramics. Materials Chemistry and Physics, 2015, 154, 94-99.	4.0	17
27	Effect of sintering temperature on microstructures and microwave dielectric properties of Li2SnO3 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 1494-1499.	2.2	7
28	Effect of sintering temperature and time on microwave dielectric properties of Nd2MoO6 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 853-859.	2.2	6
29	Improving quality factor of Nd2MoO6 ceramics by removing moisture content. Journal of Materials Science: Materials in Electronics, 2015, 26, 3502-3505.	2.2	8
30	Tuning the microwave dielectric properties of Zn2SnO4 ceramics by adding Ca0.8Sr0.2TiO3. Ceramics International, 2015, 41, 9521-9526.	4.8	6
31	Dual-band planar inverted-F antenna for application in ISM, HIPERLAN, and UNII. , 2014, , .		Ο
32	Invertedâ€E shaped monopole on highâ€permittivity substrate for application in industrial, scientific, medical, highâ€performance radio local area network, unlicensed National information infrastructure, and worldwide interoperability for microwave access. IET Microwaves, Antennas and Propagation, 2014, 8, 272-277.	1.4	3
33	Microwave dielectric properties of ZnO–B2O3–SiO2-doped Zn2SnO4 ceramics for application in triple bands inverted-U shaped monopole antenna. Journal of Alloys and Compounds, 2014, 616, 356-362.	5.5	13
34	Improvement in microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramics by applying ZnO–B2O3–SiO2. Journal of Materials Science: Materials in Electronics, 2014, 25, 4312-4318.	2.2	8
35	Influence of B2O3 on microstructure and microwave dielectric properties of 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system. Journal of Materials Science: Materials in Electronics, 2014, 25, 4760-4766.	2.2	1
36	Effect of Zr substitution on microwave dielectric properties of Zn2SnO4 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 5000-5005.	2.2	9

#	Article	IF	CITATIONS
37	Improvement microwave dielectric properties of Zn2SnO4 ceramics by substituting Sn4+ with Ti4+. Ceramics International, 2014, 40, 10337-10342.	4.8	14
38	Microstructures and microwave dielectric properties of (1Ââ~ʾÂy)Nd1â~ʾxYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 1836-1841.	2.2	1
39	Effect of sintering temperature and time on microwave dielectric properties of CaNb2O6 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 844-851.	2.2	11
40	Improvement microwave dielectric properties of Zn2SnO4 ceramics by substituting Sn4+ with Si4+. Journal of Materials Science: Materials in Electronics, 2014, 25, 2120-2125.	2.2	8
41	Microwave dielectric properties and microstructures of Ca(Nb1â^'xTax)2O6 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 2475-2481.	2.2	9
42	Microwave dielectric properties of neodymium tin oxide. Ceramics International, 2014, 40, 2641-2645.	4.8	18
43	Influence of Ba2+ substitution on the microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 2970-2975.	2.2	7
44	Tuning the microwave dielectric properties of La(Mg0.4Sr0.1Sn0.5)O3 by introducing Ca0.8Sr0.2TiO3. Journal of Materials Science: Materials in Electronics, 2013, 24, 3126-3131.	2.2	5
45	Effect of sintering temperature and time on microwave dielectric properties of lanthanum tin oxide. Journal of Materials Science: Materials in Electronics, 2013, 24, 1878-1882.	2.2	13
46	Improved microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics with Ni2+ substituting. Journal of Materials Science: Materials in Electronics, 2013, 24, 1150-1157.	2.2	9
47	A compact triple-band planar monopole antenna for WLAN and WiMAX applications. , 2013, , .		1
48	Effect of Sr substitution on microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics. Ceramics International, 2013, 39, 1877-1883.	4.8	7
49	A hybrid dielectric resonator antenna based upon novel complex perovskite microwave ceramic. Ceramics International, 2013, 39, 8043-8048.	4.8	9
50	Effect of Sm substitution on microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 4600-4606.	2.2	3
51	Tuning the microwave dielectric properties of La0.97Sm0.03(Mg0.5Sn0.5)O3 by adding Ca0.8Sm0.4/3TiO3. Journal of Materials Science: Materials in Electronics, 2013, 24, 345-351.	2.2	11
52	Microwave dielectric properties of (1Ââ^'Ây)Nd(1â^'2x/3)Bax(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramic. Journal of Materials Science: Materials in Electronics, 2013, 24, 819-826.	2.2	12
53	Improved microwave dielectric properties of Nd(Mg <inf>0.5</inf> Sn <inf>0.5</inf>)O <inf>3</inf> ceramics with Ca substitution. , 2013, , .		0
54	Phases and Microwave Dielectric Properties of CuO-Doped Nd(Mg _{0.5} Sn _{0.5})O ₃ Ceramics. Ferroelectrics, 2012, 435, 30-37.	0.6	1

#	Article	IF	CITATIONS
55	Influence of B ₂ O ₃ on Microstructure and Microwave Dielectric Properties of 0.45La _{0.97} Sm _{0.03} (Mg _{0.5} Sn _{0.5}) O ₃ –0.55Ca _{0.8} Sm _{0.4/3} TiO ₃ Ceramic System. Ferroelectrics, 2012, 434, 67-76.	0.6	1
56	Improved microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics by substituting Mg2+ with Zn2+. Ceramics International, 2012, 38, 5377-5383.	4.8	14
57	Microwave dielectric properties of novel ceramic for application in wireless communications. , 2012, , .		0
58	Microwave Dielectric Properties of Mg _{1/3} Nb _{2/3} SnO ₄ Ceramics. Ferroelectrics, Letters Section, 2012, 39, 1-7.	1.0	1
59	Elucidating the microwave dielectric properties of (Mg(1â^'x)Znx)2SnO4 ceramics. Journal of Alloys and Compounds, 2012, 527, 84-89.	5.5	21
60	Influence of B2O3 on microstructure and microwave dielectric properties of 0.4Nd(Mg0.4Zn0.1Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system. Journal of Physics and Chemistry of Solids, 2012, 73, 1240-1244.	4.0	3
61	Dual-band planar inverted-F antenna for application in ISM, HIPERLAN, UNII, and WiMAX. , 2012, , .		2
62	Hybrid Dielectric Resonator Antenna Composed of High-Permittivity Dielectric Resonator for Wireless Communications in WLAN and WiMAX. International Journal of Antennas and Propagation, 2012, 2012, 1-6.	1.2	2
63	Influence of Ca0.8Sr0.2TiO3 on the microstructures and microwave dielectric properties of Nd(Mg0.4Zn0.1Sn0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 825-831.	2.2	12
64	Microwave dielectric properties and microstructures of Nd(Mg0.5â^'xCoxSn0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 1320-1326.	2.2	9
65	Improving microwave dielectric properties of La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics with CuO additive. Current Applied Physics, 2012, 12, 483-488.	2.4	6
66	Microstructures and microwave dielectric properties of La1-xBx(Mg0.5Sn0.5)O3 ceramics. Current Applied Physics, 2012, 12, 726-731.	2.4	3
67	Microwave dielectric properties and microstructures of Nd(Mg0.5Sn0.5â^Ti)O3 ceramics. Ceramics International, 2012, 38, 2927-2934.	4.8	11
68	Microstructures and microwave dielectric properties of (1 â^'y)La1â^'Sm (Mg0.5Sn0.5)O3–yCa0.8Sm0.4/3TiO3 ceramics. Ceramics International, 2012, 38, 3097-3103.	4.8	2
69	Improved Microwave Dielectric Properties of <scp><scp>La(Mg_{0.5}Sn_{0.5})O₃</scp> </scp> Ceramics with <scp><scp>Yb³⁺</scp> </scp> Doping. International Journal of Applied Ceramic Technology. 2012. 9. 606-614.	2.1	5
70	Enhancement microwave dielectric properties of Mg2SnO4 ceramics by substituting Mg2+ with Ni2+. Materials Chemistry and Physics, 2012, 133, 829-833.	4.0	42
71	Enhancement microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramics by substituting La3+ with Sm3+. Journal of Physics and Chemistry of Solids, 2012, 73, 296-301.	4.0	7
72	Microwave Dielectric Properties of V2O5–Doped (1-x)La(Mg0.5Sn0.5)O3-xCaTiO3Ceramic System. Ferroelectrics, 2011, 413, 54-64.	0.6	0

#	Article	IF	CITATIONS
73	Microwave dielectric properties of (Mg(_{1-x})) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 752 Td (inverted-E-shaped monopole antenna. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2531-2538.	Co _{x 3.0}) <sub 31</sub
74	Enhancement microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramics by substituting Mg2+ with Ni2+. Journal of Alloys and Compounds, 2011, 509, 9518-9522.	5.5	4
75	Elucidating the dielectric properties of Mg2SnO4 ceramics at microwave frequency. Journal of Alloys and Compounds, 2011, 509, 9650-9653.	5.5	52
76	Dielectric Properties of (1-x)La(Mg0.5Sn0.5)O3-xCa0.8Sr0.2TiO3Ceramic System at Microwave Frequencies. Ferroelectrics, 2011, 423, 86-93.	0.6	0
77	Microwave dielectric properties of high quality factor La(Mg0.5â^'xCaxSn0.5)O3 ceramics. Journal of Physics and Chemistry of Solids, 2011, 72, 1447-1451.	4.0	9
78	Effect of sintering temperature and time on microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics. Materials Chemistry and Physics, 2011, 129, 116-120.	4.0	26
79	Microwave dielectric properties of La1â^'xBix(Mg0.5Sn0.5)O3 ceramics. Materials Chemistry and Physics, 2011, 129, 1110-1115.	4.0	8
80	Enhancement microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramics by Substituting Mg2+ for Co2+. Materials Chemistry and Physics, 2011, 130, 1270-1274.	4.0	4
81	Dielectric properties of CuO-doped La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics at microwave frequency. Ceramics International, 2011, 37, 55-58.	4.8	16
82	Microwave Dielectric Properties of B2O3-Doped Nd(Mg0.4Zn0.1Sn0.5)O3Ceramics for Application in Inverted-L Monopole Antenna. Ferroelectrics, Letters Section, 2011, 38, 31-39.	1.0	4
83	Influence of B2O3Additions and Sintering Temperature on Microwave Dielectric Properties of La2.9/3Ba0.05(Mg0.5Sn0.5)O3Ceramics. Ferroelectrics, Letters Section, 2011, 38, 86-93.	1.0	0
84	Microwave Dielectric Properties of La(Mg0.5-xZnxSn0.5)O3Ceramics. Ferroelectrics, Letters Section, 2011, 38, 101-107.	1.0	3
85	Dielectric properties of CuO-doped Nd(Mg <inf>0.4</inf> Zn <inf>0.1</inf> Sn <inf>0.5</inf>)O <inf>3</inf> at microwave frequency and application in superstrate loaded monopole antenna for WLAN and WiMAX2011		1
86	Influence of B ₂ O ₃ Additions and Sintering Temperature on the Dielectric Properties of La _{2.98/3} Sr _{0.01} (Mg _{0.5} Sn _{0.5})O ₃ Ceramics at Microwave Frequency. Ferroelectrics, 2011, 413, 301-310.	0.6	0
87	Effect of B2O3Additions and Sintering Temperature on the Microwave Dielectric Properties of 0.7La(Mg0.5Sn0.5)O3–0.3(Sr0.8Ca0.2)3Ti2O7Ceramics. Ferroelectrics, Letters Section, 2011, 38, 59-68.	1.0	6
88	Improved Microwave Dielectric Properties of La(Mg _{0.5} Sn _{0.5})O ₃ Ceramics with Yb ³⁺ Doping. International Journal of Applied Ceramic Technology, 2011, 9, n/a-n/a.	2.1	2
89	Dielectric Properties of B2O3-Doped Nd(Mg0.5Sn0.5)O3Ceramics at Microwave Frequencies. Ferroelectrics, 2010, 396, 104-112.	0.6	22
90	Microwave dielectric properties of (1-x)La(Mg0.5Sn0.5)O3-x(Sr0.8Ca0.2)3Ti2O7 ceramic system with a near zero temperature coefficient of resonant frequency. Crystal Research and Technology, 2010, 45, 830-834.	1.3	3

#	Article	IF	CITATIONS
91	Microwave dielectric properties of La _(1â€⊋x/3) Ba _x (Mg _{0.5} Sn _{0.5})O ₃ ceramics. Crystal Research and Technology, 2010, 45, 1149-1153.	1.3	3
92	Microwave Dielectric Properties of (1-x)La(Mg0.5Sn0.5)O3-xCaTiO3Ceramic System. Ferroelectrics, Letters Section, 2010, 37, 10-20.	1.0	6
93	New microwave dielectric material for application in mobile communication. , 2010, , .		0

Effect of B2O3Additions and Sintering Temperature on Microwave Dielectric Properties of (1 \hat{a}) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 6

21		1.0	11
95	Influence of B2O3 additions and sintering temperature on microwave dielectric properties of La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics. Journal of Alloys and Compounds, 2010, 492, 320-324.	5.5	24
96	Substituting La3+ with Sr2+ to improve microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramics. Journal of Alloys and Compounds, 2010, 506, 441-445.	5.5	4
97	Enhancement the Quality Factor of CaLa4Ti5O17Microwave Ceramics Replacing La3+with Nd3+for Application in Rectenna. Ferroelectrics, Letters Section, 2010, 37, 83-89.	1.0	9
98	Dual Band Hybrid Dielectric Resonator Antenna for Application in ISM and UNII Band. IEICE Transactions on Communications, 2010, E93-B, 2662-2665.	0.7	6
99	Influence of CuO Additions and Sintering Temperature on Microwave Dielectric Properties of La(Mg1/2Sn1/2)O3Ceramics. Ferroelectrics, 2009, 383, 183-190.	0.6	33
100	Dielectric Properties of La(Mg0.5Sn0.5)O3Ceramics Doped with V2O5at Microwave Frequencies. Ferroelectrics, 2009, 393, 54-62.	0.6	29
101	Improved dielectric properties of CaLa4Ti5O17 ceramics with Zr substitution at microwave frequency. Materials Chemistry and Physics, 2009, 118, 161-164.	4.0	22
102	Double-layered coplanar patch antenna on CaLa4 Ti5 O17 high-permittivity substrate with coplanar waveguide feed line. Microwave and Optical Technology Letters, 2009, 51, 98-100.	1.4	17
103	Investigation on the use of high-permittivity substrate in stacked patch antenna fed by a coplanar waveguide. Microwave and Optical Technology Letters, 2009, 51, 715-717.	1.4	4
104	Lowâ€profile dielectric resonator antenna with highâ€permittivity for application in WiMAX. Microwave and Optical Technology Letters, 2009, 51, 1652-1654.	1.4	10
105	Microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 for application in dielectric resonator antenna. Journal of Alloys and Compounds, 2009, 471, 347-351.	5.5	76
106	Dielectric properties of B2O3-doped La(Mg0.5Sn0.5)O3 ceramics at microwave frequencies. Journal of Alloys and Compounds, 2009, 477, 450-453.	5.5	52
107	Influence of CuO additions and sintering temperatures on the microwave dielectric properties of CaLa4Ti5O17 ceramics. Journal of Alloys and Compounds, 2009, 481, 369-372.	5.5	28
108	Investigation of the microwave dielectric properties of Ca1â^'xMgxLa4Ti5O17 ceramics for application in coplanar patch antenna. Journal of Alloys and Compounds, 2009, 486, 410-414.	5.5	26

#	Article	IF	CITATIONS
109	Dual band hybrid CPW fed planar monopole/dielectric resonator antenna. , 2009, , .		Ο
110	Ceramic disc capacitor composed of Al2O3-doped BSTO for application in voltage-controlled oscillator. Journal of Physics and Chemistry of Solids, 2008, 69, 585-588.	4.0	4
111	An automated aging system for plasma display panels. , 2008, , .		0
112	Microwave Dielectric Properties of 0.93(Mg0.95Co0.05)TiO3–0.07CaTiO3for Application in Patch Antenna. Japanese Journal of Applied Physics, 2008, 47, 992-997.	1.5	28
113	Influence of CuO Addition and Sintering Temperature on Microwave Dielectric Properties of Ca _{0.99} Zn _{0.01} La ₄ Ti ₅ O ₁₇ Ceramics for Application in Stacked Patch Antenna. Japanese Journal of Applied Physics, 2008, 47, 7959.	1.5	25
114	Dielectric characteristics of Ca(1-x)ZnxLa4Ti5O17 ceramics at microwave frequencies. , 2008, , .		0
115	Curve Fitting of Dielectric Constant and Loss Factor of ZrO2-Doped Barium Strontium Titanate for Application in Phased Array Antennas. Japanese Journal of Applied Physics, 2007, 46, 5889-5893.	1.5	1
116	Computer-aided integrated platform for design and verification of electronic ballast. , 2007, , .		0
117	Effect of DC biasing field on dielectric properties of ZrO2-doped barium strontium titanate. Journal of Materials Science, 2006, 41, 5836-5840.	3.7	4
118	Preparation and Microwave Characterization of BaxSr1-xTiO3Ceramics. Japanese Journal of Applied Physics, 1999, 38, 5612-5615.	1.5	51