Joshua Pinskier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644184/publications.pdf Version: 2024-02-01

6

#	Article	IF	CITATIONS
1	From Bioinspiration to Computer Generation: Developments in Autonomous Soft Robot Design. Advanced Intelligent Systems, 2022, 4, 2100086.	6.1	47
2	Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access, 2022, 10, 59442-59485.	4.2	72
3	Design, modeling, and control of a large range 3-DOF micropositioning stage. Mechanism and Machine Theory, 2021, 156, 104159.	4.5	30
4	A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation. Mechanism and Machine Theory, 2021, 155, 104069.	4.5	27
5	Modeling and a cross-coupling compensation control methodology of a large range 3-DOF micropositioner with low parasitic motions. Mechanism and Machine Theory, 2021, 162, 104334.	4.5	19
6	Design and evaluation of a dual-stage, compensated stick-slip actuator for long-range, precision compliant mechanisms. Sensors and Actuators A: Physical, 2021, 331, 113007.	4.1	11
7	Computational parametric analysis and experimental investigations of a compact flexure-based microgripper. Precision Engineering, 2020, 66, 363-373.	3.4	21
8	Antlion Optimized Robust Control Approach for Micropositioning Trajectory Tracking Tasks. IEEE Access, 2020, 8, 220889-220907.	4.2	8
9	FEA-based optimization of a complete structure of a monolithic z/tip/tilt micromanipulator. Journal of Micro-Bio Robotics, 2020, 16, 93-110.	2.1	4
10	Sensing and Modelling Mechanical Response in Large Deformation Indentation of Adherent Cell Using Atomic Force Microscopy. Sensors, 2020, 20, 1764.	3.8	5
11	Topology optimization of stiffness constrained flexure-hinges for precision and range maximization. Mechanism and Machine Theory, 2020, 150, 103874.	4.5	36
12	Characterization of a compact piezoelectric actuated microgripper based on double-stair bridge-type mechanism. Journal of Micro-Bio Robotics, 2020, 16, 79-92.	2.1	14
13	Topology optimization of leaf flexures to maximize in-plane to out-of-plane compliance ratio. Precision Engineering, 2019, 55, 397-407.	3.4	21
14	Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism. Mechatronics, 2018, 50, 55-68.	3.3	62
15	Topology optimisation of bridge input structures with maximal amplification for design of flexure mechanisms. Mechanism and Machine Theory, 2018, 122, 113-131.	4.5	45
16	A Flexure-Based 2-DOF Microgripper for Handling Micro-Objects. , 2018, , .		7
17	Topology optimization of leaf flexures for stiffness ratio maximization in compliant mechanisms. , 2018, , .		4

18 Design and optimization of a compact, large amplification XY flexure-mechanism. , 2017, , .

2

Joshua Pinskier

#	Article	IF	CITATIONS
19	Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification. Micromachines, 2017, 8, 238.	2.9	41
20	Design, development and analysis of a haptic-enabled modular flexure-based manipulator. Mechatronics, 2016, 40, 156-166.	3.3	38
21	Development of a dexterous haptic micro/nanomanipulator utilizing a hybrid parallel-serial flexure mechanism. , 2016, , .		1
22	Design, development and analysis of a haptic-enabled modular flexure-based manipulator. , 2015, , .		3