Hong Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6644051/publications.pdf Version: 2024-02-01

HONCLIN

#	Article	IF	CITATIONS
1	Downregulation of Erythrocyte miR-210 Induces Endothelial Dysfunction in Type 2 Diabetes. Diabetes, 2022, 71, 285-297.	0.3	15
2	Inhibition of IL17A Using an Affibody Molecule Attenuates Inflammation in ApoE-Deficient Mice. Frontiers in Cardiovascular Medicine, 2022, 9, 831039.	1.1	0
3	Sonodynamic therapy reduces iron retention of hemorrhagic plaque. Bioengineering and Translational Medicine, 2021, 6, e10193.	3.9	8
4	Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification. Cells, 2021, 10, 1276.	1.8	9
5	Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. European Heart Journal, 2021, 42, 4077-4088.	1.0	58
6	MicroRNA: A mediator of diet-induced cardiovascular protection. Current Opinion in Pharmacology, 2021, 60, 183-192.	1.7	6
7	Long Noncoding RNA <i>MIAT</i> Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation, 2021, 144, 1567-1583.	1.6	82
8	Sonodynamic Therapy Suppresses Neovascularization in Atherosclerotic Plaques via Macrophage Apoptosis-Induced Endothelial Cell Apoptosis. JACC Basic To Translational Science, 2020, 5, 53-65.	1.9	25
9	Early modulation of macrophage ROS-PPARÎ ³ -NF-κB signalling by sonodynamic therapy attenuates neointimal hyperplasia in rabbits. Scientific Reports, 2020, 10, 11638.	1.6	11
10	Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS–AMPK–mTORC1–autophagy pathway. Redox Biology, 2020, 32, 101501.	3.9	33
11	Membrane-permeabilized sonodynamic therapy enhances drug delivery into macrophages. PLoS ONE, 2019, 14, e0217511.	1.1	12
12	Germinal Center–Derived Antibodies Promote Atherosclerosis Plaque Size and Stability. Circulation, 2019, 139, 2466-2482.	1.6	51
13	miR-29b Mediates the ChronicÂInflammatory Response in Radiotherapy-Induced Vascular Disease. JACC Basic To Translational Science, 2019, 4, 72-82.	1.9	20
14	Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1907-1912.	3.3	16
15	H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation, 2018, 138, 1551-1568.	1.6	169
16	Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions. Molecular Therapy, 2018, 26, 1040-1055.	3.7	75
17	Four Surgical Modifications to the Classic Elastase Perfusion Aneurysm Model Enable Haemodynamic Alterations and Extended Elastase Perfusion. European Journal of Vascular and Endovascular Surgery, 2018, 56, 102-109.	0.8	31
18	Resolution of Inflammation Through the Lipoxin and ALX/FPR2 Receptor Pathway Protects Against Abdominal Aortic Aneurysms. JACC Basic To Translational Science, 2018, 3, 719-727.	1.9	38

Hong Jin

#	Article	IF	CITATIONS
19	Sonodynamic therapy-induced foam cells apoptosis activates the phagocytic PPARγ-LXRα-ABCA1/ABCG1 pathway and promotes cholesterol efflux in advanced plaque. Theranostics, 2018, 8, 4969-4984.	4.6	66
20	5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Alleviates Atherosclerosis via Enhancing Efferocytosis and Facilitating a Shift in the Th1/Th2 Balance Toward Th2 Polarization. Cellular Physiology and Biochemistry, 2018, 47, 83-96.	1.1	15
21	Abstract 454: Repression of Map1lc3a During Atherosclerosis Progression Plays an Important Role in the Regulation of Vascular Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	0
22	MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions. Circulation Research, 2017, 120, 633-644.	2.0	98
23	Increased Carotid Artery Lesion Inflammation Upon Treatment With the CD137 Agonistic Antibody 2A. Circulation Journal, 2017, 81, 1945-1952.	0.7	6
24	Dok-1 negatively regulates platelet integrin αIIbβ3 outside-in signalling and inhibits thrombosis in mice. Thrombosis and Haemostasis, 2016, 115, 969-978.	1.8	9
25	Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of <i>LMOD1, SYNPO2, PDLIM7, PLN</i> , and <i>SYNM</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1947-1961.	1.1	64
26	Influence of hydrogen sulfide on zymogen activation of homocysteine-induced matrix metalloproteinase-2 in H9C2 cardiocytes. Asian Pacific Journal of Tropical Medicine, 2016, 9, 489-493.	0.4	5
27	Abstract 512: The Long Non-coding Rna MIAT Regulates Smooth Muscle Cell Proliferation and Macrophage Activity in Advanced Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	1
28	Abstract 127: Induction of miR-21 Increases Fibrous Cap Stability in Vulnerable Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
29	Abstract 636: Accelerated Atherosclerosis in the Context of Rheumatoid Arthritis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
30	Endothelial PPAR-Î ³ Protects Against Vascular Thrombosis by Downregulating P-Selectin Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 838-844.	1.1	33
31	ATG16L1 Expression in Carotid Atherosclerotic Plaques Is Associated With Plaque Vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1226-1235.	1.1	37
32	Local MicroRNA Modulation Using a Novel Anti-miR-21–Eluting Stent Effectively Prevents Experimental In-Stent Restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1945-1953.	1.1	109
33	Abstract 19834: MicroRNA-148a Inhibits Expression of Plasminogen Activator Inhibitor-1: Mechanistic Implications for Obesity-associated Thrombosis. Circulation, 2015, 132, .	1.6	0
34	Abstract 281: Local MicroRNA Modulation Using a Novel Anti-mir-21-eluting Stent Effectively Prevents In-stent Restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
35	miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nature Communications, 2014, 5, 5214.	5.8	187
36	Resistin increases platelet P-selectin levels via p38 MAPK signal pathway. Diabetes and Vascular Disease Research, 2014, 11, 121-124.	0.9	20

Hong Jin

#	Article	IF	CITATIONS
37	Making Sense in Antisense: Therapeutic Potential of Noncoding RNAs in Diabetes-Induced Vascular Dysfunction. Journal of Diabetes Research, 2013, 2013, 1-10.	1.0	11
38	Abstract 284: microRNAs are Novel Plasma Biomarkers for Diagnosis and Prognosis of Abdominal Aortic Aneurysm Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
39	Abstract 539: MicroRNA-27b Regulates Salt-Inducible Kinase 1 (SIK1) in Vascular Fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
40	Abstract 36: Array-based Profiling Reveals Biomarker and Therapeutic Potential for Different microRNAs in Patients with Symptomatic Carotid Stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
41	Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats. Molecular Medicine Reports, 2012, 5, 923-928.	1.1	52
42	Asymmetric dimethylarginine impairs fibrinolytic activity in human umbilical vein endothelial cells via p38 MAPK and NF-1ºB pathways. Thrombosis Research, 2011, 128, 42-46.	0.8	7
43	Urantide alleviates monocrotaline induced pulmonary arterial hypertension in Wistar rats. Pulmonary Pharmacology and Therapeutics, 2011, 24, 386-393.	1.1	16
44	Apelin Decreases Lipolysis via Gq, Gi, and AMPK-Dependent Mechanisms. Endocrinology, 2011, 152, 59-68.	1.4	135
45	Mitogen-activated protein kinases pathway is involved in physiological testosterone-induced tissue factor pathway inhibitor expression in endothelial cells. Blood Coagulation and Fibrinolysis, 2010, 21, 420-424.	0.5	12
46	Apelin is necessary for the maintenance of insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E59-E67.	1.8	213
47	Testosterone alleviates tumor necrosis factor-alpha-mediated tissue factor pathway inhibitor downregulation via suppression of nuclear factor-kappa B in endothelial cells. Asian Journal of Andrology, 2009, 11, 266-271.	0.8	18
48	Physiological testosterone stimulates tissue plasminogen activator and tissue factor pathway inhibitor and inhibits plasminogen activator inhibitor type 1 release in endothelial cellsThis paper is one of a selection of papers in this Special Issue, entitled International Symposium on Recent Advances	0.9	66

in Molecular, Clinical, and Social Medicine, and has undergone the Journal's usual peer-review process. Biochemistry and Cell Biology, 2007, 85, 246-251.