Pan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6643747/publications.pdf

Version: 2024-02-01

1307594 1281871 12 119 7 11 citations g-index h-index papers 12 12 12 88 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Preparation of M2B5O9Cl:Eu2+ (M=Sr, Ca) blue phosphors by a facile low-temperature self-reduction method and their enhanced luminescent properties. Journal of Rare Earths, 2023, 41, 349-357.	4.8	4
2	Ca[B ₈ O ₁₁ (OH) ₄] : Eu ²⁺ – A Highly Efficient Deep Blueâ€Emitting Phosphor Prepared by Lowâ€Temperature Selfâ€reduction. Chemistry - A European Journal, 2021, 27, 13819-13827.	3.3	6
3	Highly efficient blue-emitting phosphor of $Sr[B8011(OH)4]:Eu2+ prepared by a self-reduction method. Chemical Communications, 2021, 57, 3371-3374.$	4.1	8
4	Controllable hydrothermal synthesis and morphology evolution of Zn4B6O13:Tb/Eu phosphors with tunable luminescent properties. Advanced Powder Technology, 2020, 31, 1633-1642.	4.1	13
5	Synthesis, characterization and standard molar enthalpies of formation of two zinc borates: 2ZnO·2B2O3·3H2O and ZnB4O7. Journal of Chemical Thermodynamics, 2019, 139, 105868.	2.0	7
6	Luminescence properties in relation to controllable morphologies of Ba3[Ge2B7O16(OH)2](OH)(H2O):Eu3+ and its thermal conversion product Ba3Ge2B6O16:Eu3+. RSC Advances, 2019, 9, 891-898.	3.6	4
7	Co-existence phenomenon of Ce3+/Ce4+ and Tb3+ in Ce/Tb co-doped Zn2(BO3)(OH)0.75F0.25 phosphor: Luminescence and energy transfer. Advanced Powder Technology, 2019, 30, 974-982.	4.1	13
8	Synthesis and spectroscopic studies of Zn 4 B 6 O 13 and Eu/Tb single-doped Zn 4 B 6 O 13 phosphors. Journal of Rare Earths, 2017, 35, 441-445.	4.8	13
9	Luminescence properties in relation to controllable morphologies of the InBO 3 :Eu 3+ phosphor. Materials Research Bulletin, 2017, 94, 31-37.	5.2	11
10	Controlling the structure and morphology of zinc borate by adjusting the reaction temperature and pH value: formation mechanisms and luminescent properties. RSC Advances, 2017, 7, 3695-3703.	3.6	16
11	Controlled preparation and photoluminescence properties of Zn6O(OH)(BO3)3:Eu(III) phosphors. Advanced Powder Technology, 2017, 28, 2613-2620.	4.1	6
12	Controllable synthesis, growth mechanism and luminescence property of a novel monodisperse microsphere with a hole for Zn ₈ [(BO ₃) ₃ O ₂ (OH) ₃]:Eu ³⁺ . CrystEngComm, 2016, 18, 1311-1320.	2.6	18