Luis M Bimbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6643203/publications.pdf

Version: 2024-02-01

331670 454955 2,019 31 21 30 h-index citations g-index papers 31 31 31 2587 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pressure-induced superelastic behaviour of isonicotinamide. Chemical Communications, 2021, 57, 11827-11830.	4.1	1
2	Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model. ACS Applied Bio Materials, 2020, 3, 4095-4108.	4.6	12
3	Crystallisation Behaviour of Pharmaceutical Compounds Confined within Mesoporous Silicon. Pharmaceutics, 2020, 12, 214.	4.5	16
4	Dehydroabietylamine-Based Cellulose Nanofibril Films: A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects. ACS Sustainable Chemistry and Engineering, 2019, 7, 5002-5009.	6.7	8
5	Pulmonary administration of a dry powder formulation of the antifibrotic drug tilorone reduces silica-induced lung fibrosis in mice. International Journal of Pharmaceutics, 2018, 544, 121-128.	5.2	9
6	High-Generation Amphiphilic Janus-Dendrimers as Stabilizing Agents for Drug Suspensions. Biomacromolecules, 2018, 19, 3983-3993.	5.4	11
7	Surface modification of acetaminophen particles by atomic layer deposition. International Journal of Pharmaceutics, 2017, 525, 160-174.	5.2	40
8	Modular synthesis of self-assembling Janus-dendrimers and facile preparation of drug-loaded dendrimersomes. Nanoscale, 2017, 9, 7189-7198.	5. 6	23
9	Aerosolization, Drug Permeation and Cellular Interaction of Dry Powder Pulmonary Formulations of Corticosteroids with Hydroxypropyl- \hat{l}^2 -Cyclodextrin as a Solubilizer. Pharmaceutical Research, 2017, 34, 25-35.	3.5	17
10	Drug permeation and cellular interaction of amino acid-coated drug combination powders for pulmonary delivery. International Journal of Pharmaceutics, 2016, 504, 89-97.	5.2	13
11	Dendrimers and their supramolecular nanostructures for biomedical applications. Journal of Drug Delivery Science and Technology, 2016, 34, 10-20.	3.0	30
12	Selfâ€Assembly of Amphiphilic Janus Dendrimers into Mechanically Robust Supramolecular Hydrogels for Sustained Drug Release. Chemistry - A European Journal, 2015, 21, 14433-14439.	3.3	43
13	Inorganic Nanoparticles in Targeted Drug Delivery and Imaging. Advances in Delivery Science and Technology, 2015, , 571-613.	0.4	12
14	Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine, 2014, 9, 535-554.	3.3	155
15	Inhibition of Influenza A Virus Infection <i>in Vitro</i> by Saliphenylhalamide-Loaded Porous Silicon Nanoparticles. ACS Nano, 2013, 7, 6884-6893.	14.6	71
16	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	9.9	141
17	Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research, 2013, 28, 152-164.	2.6	54
18	Porous Silicon Nanoparticles. , 2013, , 235-275.		1

#	Article	IF	CITATION
19	Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 2012, 13, 1068-1086.	1.2	39
20	Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma Protein Adsorption and Biodistribution. Molecular Pharmaceutics, 2012, 9, 654-663.	4.6	146
21	Amine Modification of Thermally Carbonized Porous Silicon with Silane Coupling Chemistry. Langmuir, 2012, 28, 14045-14054.	3.5	108
22	A new cocrystal and salts of itraconazole: Comparison of solid-state properties, stability and dissolution behavior. International Journal of Pharmaceutics, 2012, 436, 403-409.	5.2	78
23	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	5.6	63
24	Toward a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment. International Journal of Pharmaceutics, 2012, 434, 9-19.	5.2	45
25	The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012, 33, 3353-3362.	11.4	125
26	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	11.4	71
27	Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials, 2011, 32, 2625-2633.	11.4	157
28	Mesoporous materials as controlled drug delivery formulations. Journal of Drug Delivery Science and Technology, 2011, 21, 139-155.	3.0	81
29	Multifunctional Porous Silicon for Therapeutic Drug Delivery and Imaging. Current Drug Discovery Technologies, 2011, 8, 228-249.	1.2	97
30	Design of peptide-targeted liposomes containing nucleic acids. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 433-441.	2.6	36
31	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats, ACS Nano, 2010, 4, 3023-3032	14.6	316