
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664281/publications.pdf Version: 2024-02-01

RINC 7HAO

#	Article	IF	CITATIONS
1	Li Storage Properties of Disordered Graphene Nanosheets. Chemistry of Materials, 2009, 21, 3136-3142.	6.7	970
2	Supercapacitor performances of thermally reduced graphene oxide. Journal of Power Sources, 2012, 198, 423-427.	7.8	385
3	Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry, 2011, 21, 18792.	6.7	305
4	Sandwich-like SnS ₂ /Graphene/SnS ₂ with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. ACS Nano, 2019, 13, 9100-9111.	14.6	276
5	Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 367-373.	10.3	177
6	A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochimica Acta, 2013, 91, 173-178.	5.2	115
7	Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochimica Acta, 2011, 56, 7340-7346.	5.2	109
8	Inhibiting the shuttle effect of Li–S battery with a graphene oxide coating separator: Performance improvement and mechanism study. Journal of Power Sources, 2017, 342, 929-938.	7.8	108
9	Three-Dimensional Interconnected Spherical Graphene Framework/SnS Nanocomposite for Anode Material with Superior Lithium Storage Performance: Complete Reversibility of Li ₂ S. ACS Applied Materials & Interfaces, 2017, 9, 1407-1415.	8.0	101
10	Morphology and electrical properties of carbon coated LiFePO4 cathode materials. Journal of Power Sources, 2009, 189, 462-466.	7.8	100
11	Irradiated Graphene Loaded with SnO ₂ Quantum Dots for Energy Storage. ACS Nano, 2015, 9, 11351-11361.	14.6	76
12	Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries. Journal of Alloys and Compounds, 2021, 860, 157915.	5.5	69
13	Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries. Nano Energy, 2020, 70, 104504.	16.0	61
14	Insight on Fractal Assessment Strategies for Tin Dioxide Thin Films. ACS Nano, 2010, 4, 1202-1208.	14.6	59
15	Graphene modified Li3V2(PO4)3 as a high-performance cathode material for lithium ion batteries. Electrochimica Acta, 2012, 85, 377-383.	5.2	58
16	Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochimica Acta, 2015, 153, 246-253.	5.2	58
17	Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy, 2021, 84, 105906.	16.0	56
18	One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries. Journal of Alloys and Compounds, 2015, 645, 509-516.	5.5	49

#	Article	IF	CITATIONS
19	Stabilizing the reversible capacity of SnO2/graphene composites by Cu nanoparticles. Chemical Engineering Journal, 2019, 367, 45-54.	12.7	49
20	Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte. Chemical Engineering Journal, 2020, 393, 124706.	12.7	49
21	Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating. Energy Storage Materials, 2020, 28, 17-26.	18.0	47
22	Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries. Journal of Applied Electrochemistry, 2014, 44, 53-60.	2.9	46
23	Lithiation-assisted exfoliation and reduction of SnS ₂ to SnS decorated on lithium-integrated graphene for efficient energy storage. Nanoscale, 2017, 9, 17922-17932.	5.6	44
24	In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery. Energy Storage Materials, 2022, 50, 810-818.	18.0	43
25	Core-shell Li 2 S@Li 3 PS 4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and overpotential. Journal of Power Sources, 2017, 353, 167-175.	7.8	37
26	Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high performance lithium/sodium-ion batteries. Electrochimica Acta, 2020, 354, 136730.	5.2	36
27	Ultrastable Li-ion battery anodes by encapsulating SnS nanoparticles in sulfur-doped graphene bubble films. Nanoscale, 2020, 12, 3941-3949.	5.6	36
28	In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content. Journal of Power Sources, 2018, 378, 81-89.	7.8	35
29	Composition-dependent lithium storage performances of SnS/SnO2 heterostructures sandwiching between spherical graphene. Electrochimica Acta, 2019, 300, 253-262.	5.2	35
30	Self-assembly of ultrathin MnO2/graphene with three-dimension hierarchical structure by ultrasonic-assisted co-precipitation method. Journal of Alloys and Compounds, 2016, 663, 180-186.	5.5	33
31	Modification based on primary particle level to improve the electrochemical performance of SiO -based anode materials. Journal of Power Sources, 2020, 467, 228301.	7.8	33
32	Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage. Nanoscale, 2018, 10, 16116-16126.	5.6	30
33	Uniform Li Deposition Sites Provided by Atomic Layer Deposition for the Dendrite-free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 19530-19538.	8.0	30
34	Structural phase transformation from SnS ₂ /reduced graphene oxide to SnS/sulfur-doped graphene and its lithium storage properties. Nanoscale, 2020, 12, 1697-1706.	5.6	29
35	Stabilizing Li7P3S11/lithium metal anode interface by in-situ bifunctional composite layer. Chemical Engineering Journal, 2022, 429, 132411.	12.7	27
36	One-step hydrothermal reduction synthesis of tiny Sn/SnO2 nanoparticles sandwiching between spherical graphene with excellent lithium storage cycling performances. Electrochimica Acta, 2018, 292, 72-80.	5.2	25

#	Article	IF	CITATIONS
37	Graphene bubble film encapsulated Si@C hollow spheres as a durable anode material for lithium storage. Electrochimica Acta, 2020, 361, 137074.	5.2	25
38	Growth of MoS ₂ Nanoflowers with Expanded Interlayer Distance onto Nâ€Đoped Graphene for Reversible Lithium Storage. ChemElectroChem, 2018, 5, 2263-2270.	3.4	24
39	In-situ lithiation synthesis of nano-sized lithium sulfide/graphene aerogel with covalent bond interaction for inhibiting the polysulfides shuttle of Li-S batteries. Electrochimica Acta, 2019, 312, 282-290.	5.2	24
40	In-situ solvothermal phosphorization from nano-sized tetragonal-Sn to rhombohedral-Sn4P3 embedded in hollow graphene sphere with high capacity and stability. Electrochimica Acta, 2019, 312, 263-271.	5.2	24
41	MoS ₂ /graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery. Journal of Materials Research, 2016, 31, 3151-3160.	2.6	23
42	Hierarchically assembled 3D nanoflowers and 0D nanoparticles of nickel sulfides on reduced graphene oxide with excellent lithium storage performances. Applied Surface Science, 2018, 439, 386-393.	6.1	23
43	Sandwich-structured graphene hollow spheres limited Mn2SnO4/SnO2 heterostructures as anode materials for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 586, 1-10.	9.4	23
44	Incorporation of lithium halogen in Li7P3S11 glass-ceramic and the interface improvement mechanism. Electrochimica Acta, 2021, 390, 138849.	5.2	21
45	A double-shelled structure confining sulfur for lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 811, 151434.	5.5	20
46	Enhancing lithium storage performance by strongly binding silicon nanoparticles sandwiching between spherical graphene. Applied Surface Science, 2021, 539, 148191.	6.1	20
47	Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries. Journal of Materials Research, 2014, 29, 609-616.	2.6	18
48	Controlled scalable synthesis of yolk-shell structured large-size industrial silicon with interconnected carbon network for lithium storage. Electrochimica Acta, 2018, 283, 1702-1711.	5.2	18
49	Facile fabrication and application of SnO ₂ –ZnO nanocomposites: insight into chain-like frameworks, heterojunctions and quantum dots. RSC Advances, 2016, 6, 82096-82102.	3.6	17
50	Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17415-17425.	8.0	16
51	Moderate Specific Surface Areas Help Three-Dimensional Frameworks Achieve Dendrite-Free Potassium-Metal Anodes. ACS Applied Materials & Interfaces, 2022, 14, 900-909.	8.0	16
52	Facile synthesis of ultrathin, undersized MoS ₂ /graphene for lithium-ion battery anodes. RSC Advances, 2016, 6, 99833-99841.	3.6	15
53	Improved low-temperature performance of surface modified lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium ion batteries. Solid State Ionics, 2020, 347, 115245.	2.7	15
54	A novel graphene modified LiMnPO4 as a performance-improved cathode material for lithium-ion batteries. Journal of Materials Research, 2013, 28, 2584-2589.	2.6	14

#	Article	IF	CITATIONS
55	Enhancing lithium-ion batteries performance via electron-beam irradiation strategies: A case study of graphene aerogels loaded with SnO2 quantum dots. Electrochimica Acta, 2018, 281, 769-776.	5.2	13
56	Porous ZnO/Co ₃ O ₄ /N-doped carbon nanocages synthesized <i>via</i> pyrolysis of complex metal–organic framework (MOF) hybrids as an advanced lithium-ion battery anode. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 969-978.	0.5	13
57	Realizing Spherical Lithium Deposition by In Situ Formation of a Li ₂ S/Li–Sn Alloy Mixed Layer on Carbon Paper for Stable and Safe Li Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 48828-48837.	8.0	10
58	Chemical lithiation route to size-controllable LiFePO4/C nanocomposite. Journal of Applied Electrochemistry, 2013, 43, 611-617.	2.9	9
59	Synthesis of porous Li ₂ MnO ₃ -LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ nanoplates via colloidal crystal template. Journal of Materials Research, 2013, 28, 1505-1511.	2.6	8
60	Construction of a High-Stability and Low-Nucleation-Barrier Cu ₃ Sn Alloy Layer on Carbon Paper for Dendrite-Free Li Metal Deposition. ACS Applied Materials & Interfaces, 2022, 14, 2930-2938.	8.0	8
61	A novel Fe ₂ O ₃ rhombohedra/graphene composite as a high stability electrode for lithium-ion batteries. Journal of Materials Research, 2015, 30, 761-769.	2.6	7
62	A novel interlayer-expanded tin disulfide/reduced graphene oxide nanocomposite as anode material for high-performance sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 611, 215-223.	9.4	7
63	One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance. Journal of Colloid and Interface Science, 2022, 615, 1-9.	9.4	6
64	Construction of SnS ₂ –SnO ₂ heterojunctions decorated on graphene nanosheets with enhanced visible-light photocatalytic performance. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 812-821.	0.5	4
65	Preparation of SiOx–TiO2/Si/CNTs composite microspheres as novel anodes for lithium-ion battery with good cycle stability. Journal of Materials Science: Materials in Electronics, 2022, 33, 11025-11037.	2.2	4
66	Cu Foam-Loaded Cu ₂ Mg Alloy with High Electrochemical Stability to Regulate the Nucleation of Lithium for Dendrite-Free Lithium Metal Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 7149-7157.	6.7	4
67	Thermal initiation/ultraviolet cross-linking process in polyethylene oxide@Li6·75La3Zr1·75Ta0·25O12-based composite electrolyte with high room-temperature ionic conductivity and long life cycle. Journal of Power Sources, 2022, 541, 231660.	7.8	4
68	Sn restriction and Li2S reversible properties of novel sandwiched SnS@graphene hollow-sphere architecture for lithium storage. Electrochimica Acta, 2020, 345, 136154.	5.2	3
69	Improvement of cycling stability and high-temperature performance of Li[Ni0.80Co0.15Al0.05]O2 cathode by thin-layer AlF3 coating. Journal of Materials Science: Materials in Electronics, 2020, 31, 11141-11149.	2.2	1