Cheng-Fu Kao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6642730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	H3K4 Methylation in Aging and Metabolism. Epigenomes, 2021, 5, 14.	1.8	9
2	Histone dynamics during DNA replication stress. Journal of Biomedical Science, 2021, 28, 48.	7.0	7
3	iTARGEX analysis of yeast deletome reveals novel regulators of transcriptional buffering in S phase and protein turnover. Nucleic Acids Research, 2021, 49, 7318-7329.	14.5	2
4	Local chromatin fiber folding represses transcription and loop extrusion in quiescent cells. ELife, 2021, 10, .	6.0	18
5	Epigenetic Regulation of WNT3A Enhancer during Regeneration of Injured Cortical Neurons. International Journal of Molecular Sciences, 2020, 21, 1891.	4.1	4
6	WNT3A Promotes Neuronal Regeneration upon Traumatic Brain Injury. International Journal of Molecular Sciences, 2020, 21, 1463.	4.1	18
7	H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nature Communications, 2020, 11, 809.	12.8	41
8	Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. PLoS Biology, 2019, 17, e3000433.	5.6	7
9	Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. , 2019, 17, e3000433.		0
10	Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. , 2019, 17, e3000433.		0
11	Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. , 2019, 17, e3000433.		0
12	Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. , 2019, 17, e3000433.		0
13	SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 270-281.	1.9	4
14	Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2205-E2214.	7.1	39
15	H2B ubiquitylation and the histone chaperone Asf1 cooperatively mediate the formation and maintenance of heterochromatin silencing. Nucleic Acids Research, 2017, 45, 8225-8238.	14.5	9
16	Mutation at a distance caused by homopolymeric guanine repeats in <i>Saccharomyces cerevisiae</i> . Science Advances, 2016, 2, e1501033.	10.3	8
17	(Ubi)quitin' the h2bit: recent insights into the roles of H2B ubiquitylation in DNA replication and transcription. Epigenetics, 2015, 10, 122-126.	2.7	11
18	Feedback Control of Snf1 Protein and Its Phosphorylation Is Necessary for Adaptation to Environmental Stress. Journal of Biological Chemistry, 2015, 290, 16786-16796.	3.4	19

Cheng-Fu Kao

#	Article	IF	CITATIONS
19	H2B Mono-ubiquitylation Facilitates Fork Stalling and Recovery during Replication Stress by Coordinating Rad53 Activation and Chromatin Assembly. PLoS Genetics, 2014, 10, e1004667.	3.5	26
20	Expression of zebrafish anterior gradient 2 in the semicircular canals and supporting cells of otic vesicle sensory patches is regulated by Sox10. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 425-437.	1.9	10
21	Integrative transcriptome sequencing identifies <i>trans</i> -splicing events with important roles in human embryonic stem cell pluripotency. Genome Research, 2014, 24, 25-36.	5.5	91
22	The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes and Development, 2014, 28, 1999-2012.	5.9	180
23	Regulation of Snf1 kinase by a cross talk between ubiquitylation and phosphorylation (LB256). FASEB Journal, 2014, 28, LB256.	0.5	0
24	Induction of GADD45α expression contributes to the anti-proliferative effects of polymethoxyflavones on colorectal cancer cells. Journal of Functional Foods, 2013, 5, 616-624.	3.4	12
25	Heme oxygenase-1 induction by the ROS–JNK pathway plays a role in aluminum-induced anemia. Journal of Inorganic Biochemistry, 2013, 128, 221-228.	3.5	26
26	Resveratrol activates the histone H2B ubiquitin ligase, RNF20, in MDA-MB-231 breast cancer cells. Journal of Functional Foods, 2013, 5, 790-800.	3.4	15
27	LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Research, 2013, 41, 7753-7770.	14.5	58
28	Histone ubiquitylation and chromatin dynamics. Frontiers in Bioscience - Landmark, 2012, 17, 1051.	3.0	42
29	Interplay between SIN3A and STAT3 Mediates Chromatin Conformational Changes and GFAP Expression during Cellular Differentiation. PLoS ONE, 2011, 6, e22018.	2.5	48
30	H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast. BMC Genomics, 2011, 12, 627.	2.8	27
31	Flickin' the ubiquitin switch. Epigenetics, 2011, 6, 1165-1175.	2.7	21
32	The C-Terminus of Histone H2B Is Involved in Chromatin Compaction Specifically at Telomeres, Independently of Its Monoubiquitylation at Lysine 123. PLoS ONE, 2011, 6, e22209.	2.5	7
33	Epithelial Cell Adhesion Molecule Regulation Is Associated with the Maintenance of the Undifferentiated Phenotype of Human Embryonic Stem Cells. Journal of Biological Chemistry, 2010, 285, 8719-8732.	3.4	114
34	Effect of Physiological Levels of Sodium Selenite on the Expression and Regulation of Hypermethylated Tumor Supressor Gene in Human Breast Cancer Cell Line. FASEB Journal, 2010, 24, 916.6.	0.5	0
35	DNA methylation and histone modification regulate silencing of OPG during tumor progression. Journal of Cellular Biochemistry, 2009, 108, 315-325.	2.6	47
36	NOLC1, an Enhancer of Nasopharyngeal Carcinoma Progression, Is Essential for TP53 to Regulate MDM2 Expression. American Journal of Pathology, 2009, 175, 342-354.	3.8	40

Cheng-Fu Kao

#	Article	IF	CITATIONS
37	H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation. Molecular Cell, 2008, 31, 57-66.	9.7	319
38	Human pluripotent stem cells: current status and future perspectives. Chinese Journal of Physiology, 2008, 51, 214-25.	1.0	6
39	Histone Ubiquitylation and the Regulation of Transcription. , 2006, 41, 47-75.		59
40	Histone H2B Ubiquitylation Is Associated with Elongating RNA Polymerase II. Molecular and Cellular Biology, 2005, 25, 637-651.	2.3	299
41	Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes and Development, 2004, 18, 184-195.	5.9	186
42	HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO Journal, 2003, 22, 3164-3174.	7.8	126
43	Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes and Development, 2003, 17, 2648-2663.	5.9	598