Raimondo Luciano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6642712/publications.pdf

Version: 2024-02-01

47006 102487 5,440 121 47 66 citations h-index g-index papers 121 121 121 1912 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Calibration of the length scale parameter for the stress-driven nonlocal elasticity model from quasi-static and dynamic experiments. Mechanics of Advanced Materials and Structures, 2023, 30, 3518-3524.	2.6	12
2	Exact closed-form solutions for nonlocal beams with loading discontinuities. Mechanics of Advanced Materials and Structures, 2022, 29, 694-704.	2.6	32
3	Fracture analysis of nanobeams based on the stress-driven non-local theory of elasticity. Mechanics of Advanced Materials and Structures, 2022, 29, 1967-1976.	2.6	17
4	Structural integrity of shot peened Ti6Al4V specimens under fretting fatigue. International Journal of Fracture, 2022, 234, 45-55.	2.2	9
5	Fracture behaviour of nanobeams through Two-Phase Local/Nonlocal Stress-Driven model. Composite Structures, 2022, 280, 114957.	5.8	21
6	Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials. Composite Structures, 2022, 282, 115032.	5.8	24
7	Nonlocal strain and stress gradient elasticity of Timoshenko nano-beams with loading discontinuities. International Journal of Engineering Science, 2022, 173, 103620.	5.0	27
8	Meshless Computational Strategy for Higher Order Strain Gradient Plate Models. Mathematical and Computational Applications, 2022, 27, 19.	1.3	2
9	Optimization of a Radial Point Interpolation Meshless strategy for strain gradient nanoplates. Engineering Analysis With Boundary Elements, 2022, 140, 70-78.	3.7	10
10	Free transverse vibrations of nanobeams with multiple cracks. International Journal of Engineering Science, 2022, 177, 103703.	5.0	29
11	An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage. International Journal of Fatigue, 2022, 163, 107032.	5.7	22
12	Modeling of buckling of nanobeams embedded in elastic medium by local-nonlocal stress-driven gradient elasticity theory. Composite Structures, 2022, 297, 115907.	5.8	7
13	Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model. Mechanics of Advanced Materials and Structures, 2021, 28, 2408-2416.	2.6	51
14	Nonlinear free vibrations analysis of geometrically imperfect FG nano-beams based on stress-driven nonlocal elasticity with initial pretension force. Composite Structures, 2021, 255, 112856.	5.8	37
15	Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory. Composite Structures, 2021, 262, 113337.	5.8	40
16	Analytical solution of cross- and angle-ply nano plates with strain gradient theory for linear vibrations and buckling. Mechanics of Advanced Materials and Structures, 2021, 28, 1201-1215.	2.6	36
17	Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates. Nanomaterials, 2021, 11, 87.	4.1	38
18	Nonlocal layerwise formulation for bending of multilayered/functionally graded nanobeams featuring weak bonding. European Journal of Mechanics, A/Solids, 2021, 86, 104193.	3.7	15

#	Article	IF	CITATIONS
19	Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment. Mathematics, 2021, 9, 567.	2.2	35
20	Semi-analytical static analysis of nonlocal strain gradient laminated composite nanoplates in hygrothermal environment. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	1.6	12
21	Linear eigenvalue analysis of laminated thin plates including the strain gradient effect by means of conforming and nonconforming rectangular finite elements. Computers and Structures, 2021, 257, 106676.	4.4	18
22	Numerical Investigation on the Use of Flat-Jack Test for Detecting Masonry Deformability. Journal of Testing and Evaluation, 2021, 49, 537-549.	0.7	9
23	Nanobeams with Internal Discontinuities: A Local/Nonlocal Approach. Nanomaterials, 2021, 11, 2651.	4.1	5
24	Stability analysis at the micro- and macro-scales in periodic bioinspired composites. Procedia Structural Integrity, 2021, 33, 1103-1114.	0.8	0
25	Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mechanics of Advanced Materials and Structures, 2020, 27, 869-875.	2.6	83
26	A refined diffuse cohesive approach for the failure analysis in quasibrittle materialsâ€"part I: Theoretical formulation and numerical calibration. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 221-241.	3.4	42
27	Variational approaches for bending and buckling of non-local stress-driven Timoshenko nano-beams for smart materials. Mechanics Research Communications, 2020, 103, 103470.	1.8	24
28	Size-dependent linear elastic fracture of nanobeams. International Journal of Engineering Science, 2020, 157, 103381.	5.0	28
29	Nonlocal layerwise formulation for interfacial tractions in layered nanobeams. Mechanics Research Communications, 2020, 109, 103595.	1.8	7
30	A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach. Procedia Structural Integrity, 2020, 25, 334-347.	0.8	19
31	Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model. Mechanics Research Communications, 2020, 107, 103536.	1.8	27
32	A multiscale analysis of instability-induced failure mechanisms in fiber-reinforced composite structures via alternative modeling approaches. Composite Structures, 2020, 251, 112529.	5 . 8	39
33	Higher modes of buckling in shear deformable nanobeams. International Journal of Engineering Science, 2020, 154, 103338.	5.0	50
34	Analysis of bond behavior of injected anchors in masonry elements by means of Finite Element Modeling. Composite Structures, 2020, 241, 112099.	5.8	14
35	Novel local/nonlocal formulation of the stress-driven model through closed form solution for higher vibrations modes. Composite Structures, 2020, 252, 112688.	5.8	25
36	Material Symmetries in Homogenized Hexagonal-Shaped Composites as Cosserat Continua. Symmetry, 2020, 12, 441.	2.2	24

3

#	Article	IF	Citations
37	An Inter-element Fracture Approach for the Analysis of Concrete Cover Separation Failure in FRP-Reinforced RC Beams. Lecture Notes in Mechanical Engineering, 2020, , 537-549.	0.4	6
38	Bending and Buckling of Timoshenko Nano-Beams in Stress-Driven Approach. Lecture Notes in Mechanical Engineering, 2020, , 832-841.	0.4	0
39	Free Vibrations of Sandwich Plates with Damaged Soft-Core and Non-Uniform Mechanical Properties: Modeling and Finite Element Analysis. Materials, 2019, 12, 2444.	2.9	20
40	A refined diffuse cohesive approach for the failure analysis in quasibrittle materialsâ€"part II: Application to plain and reinforced concrete structures. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2764-2781.	3.4	42
41	A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Composites Part B: Engineering, 2019, 164, 590-598.	12.0	75
42	A numerical model based on ALE formulation to predict fast crack growth in composite structures. Procedia Structural Integrity, 2019, 18, 422-431.	0.8	2
43	Solution for cross- and angle-ply laminated Kirchhoff nano plates in bending using strain gradient theory. Composites Part B: Engineering, 2019, 173, 107006.	12.0	36
44	Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams. Composites Part B: Engineering, 2019, 164, 667-674.	12.0	68
45	Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mechanics of Advanced Materials and Structures, 2019, 26, 1307-1315.	2.6	103
46	Stress-driven two-phase integral elasticity for torsion of nano-beams. Composites Part B: Engineering, 2018, 145, 62-69.	12.0	65
47	Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science, 2018, 126, 53-67.	5.0	121
48	Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites. Composite Structures, 2018, 189, 688-699.	5.8	34
49	Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum Mechanics and Thermodynamics, 2018, 30, 641-655.	2.2	7 5
50	Exact solutions of inflected functionally graded nano-beams in integral elasticity. Composites Part B: Engineering, 2018, 142, 273-286.	12.0	97
51	A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: Application to masonry structures. Composites Part B: Engineering, 2018, 141, 50-59.	12.0	73
52	Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. European Journal of Mechanics, A/Solids, 2018, 72, 275-286.	3.7	94
53	Local stress in periodic composites via the Riesz summability method. Composites Part B: Engineering, 2018, 150, 27-35.	12.0	1
54	Predictive model for the collapse load of masonry assemblage with two piers joined by a spandrel. Meccanica, 2018, 53, 1803-1817.	2.0	1

#	Article	IF	CITATIONS
55	An interface approach based on moving mesh and cohesive modeling in Z-pinned composite laminates. Composites Part B: Engineering, 2018, 135, 207-217.	12.0	34
56	Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 13-30.	2.7	93
57	Stress-driven integral elastic theory for torsion of nano-beams. Mechanics Research Communications, 2018, 87, 35-41.	1.8	82
58	A mixed explicit–implicit time integration approach for nonlinear analysis of base-isolated structures. Annals of Solid and Structural Mechanics, 2018, 10, 17-29.	0.5	33
59	Free vibrations of elastic beams by modified nonlocal strain gradient theory. International Journal of Engineering Science, 2018, 133, 99-108.	5.0	122
60	Nonlocal inflected nano-beams: A stress-driven approach of bi-Helmholtz type. Composite Structures, 2018, 200, 239-245.	5.8	71
61	Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models. Composites Part B: Engineering, 2018, 154, 20-32.	12.0	85
62	Modulated Linear Dynamics of Functionally Graded Nanobeams With Nonlocal and Gradient Elasticity. , 2018, , 293-323.		2
63	Application of gradient elasticity to armchair carbon nanotubes: Size effects and constitutive parameters assessment. European Journal of Mechanics, A/Solids, 2017, 65, 1-13.	3.7	68
64	Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers. Composite Structures, 2017, 174, 12-18.	5.8	70
65	Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Composites Part B: Engineering, 2017, 123, 105-111.	12.0	202
66	Multiscale failure analysis of periodic masonry structures with traditional and fiber-reinforced mortar joints. Composites Part B: Engineering, 2017, 118, 75-95.	12.0	41
67	Nano-beams under torsion: a stress-driven nonlocal approach. PSU Research Review, 2017, 1, 164-169.	2.4	10
68	A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation. Composites Part B: Engineering, 2017, 108, 315-324.	12.0	83
69	Strengthening Masonry Arches with Lime-Based Mortar Composite. Buildings, 2017, 7, 49.	3.1	38
70	Application of an enhanced version of the Eringen differential model to nanotechnology. Composites Part B: Engineering, 2016, 96, 274-280.	12.0	98
71	Experimental investigation on masonry arches strengthened with PBO-FRCM composite. Composites Part B: Engineering, 2016, 100, 228-239.	12.0	83
72	Effects of microfracture and contact induced instabilities on the macroscopic response of finitely deformed elastic composites. Composites Part B: Engineering, 2016, 107, 233-253.	12.0	20

#	Article	IF	Citations
73	Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation. Composites Part B: Engineering, 2016, 100, 208-219.	12.0	192
74	An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material. Composite Structures, 2016, 153, 972-988.	5.8	43
75	An Eringen-like model for Timoshenko nanobeams. Composite Structures, 2016, 139, 104-110.	5.8	62
76	Irregular stone masonries: Analysis and strengthening with glass fibre reinforced composites. Composites Part B: Engineering, 2016, 92, 84-93.	12.0	35
77	Experimental Investigation on Bond Behavior of Cement-Matrix–Based Composites for Strengthening of Masonry Structures. Journal of Composites for Construction, 2016, 20, .	3.2	54
78	A Fully Gradient Model for Euler-Bernoulli Nanobeams. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	51
79	Carbon-FRCM materials for structural upgrade of masonry arch road bridges. Composites Part B: Engineering, 2015, 75, 355-366.	12.0	70
80	On torsion of random composite beams. Composite Structures, 2015, 132, 915-922.	5.8	58
81	Mixed-mode fracture in lightweight aggregate concrete by using a moving mesh approach within a multiscale framework. Composite Structures, 2015, 123, 88-97.	5.8	40
82	Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Composites Part B: Engineering, 2015, 72, 217-222.	12.0	86
83	A gradient Eringen model for functionally graded nanorods. Composite Structures, 2015, 131, 1124-1131.	5.8	67
84	Eigenstrain and Fourier series for evaluation of elastic local fields and effective properties of periodic composites. Composites Part B: Engineering, 2015, 81, 251-258.	12.0	22
85	Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams. Composite Structures, 2015, 129, 80-89.	5.8	79
86	A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete. Construction and Building Materials, 2015, 95, 860-874.	7.2	38
87	Some closed-form solutions of functionally graded beams undergoing nonuniform torsion. Composite Structures, 2015, 123, 132-136.	5.8	54
88	Analogies between Kirchhoff plates and functionally graded Saint-Venant beams under torsion. Continuum Mechanics and Thermodynamics, 2015, 27, 499-505.	2.2	62
89	Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets. Composite Structures, 2015, 120, 208-220.	5.8	38
90	Some analytical solutions of functionally graded Kirchhoff plates. Composites Part B: Engineering, 2015, 68, 266-269.	12.0	63

#	Article	IF	Citations
91	A micromechanical four-phase model to predict the compressive failure surface of cement concrete. Frattura Ed Integrita Strutturale, 2014, 8, 19-27.	0.9	2
92	Critical surfaces for adobe masonry: Micromechanical approach. Composites Part B: Engineering, 2014, 56, 790-796.	12.0	29
93	Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates. Composite Structures, 2014, 118, 448-454.	5.8	61
94	Nonlinear homogenized properties of defected composite materials. Computers and Structures, 2014, 134, 102-111.	4.4	36
95	Micromechanical analysis of adobe masonry as two-component composite: Influence of bond and loading schemes. Composite Structures, 2014, 112, 254-263.	5.8	23
96	Debonding of FRP in multi-span masonry arch structures via limit analysis. Composite Structures, 2014, 108, 856-865.	5.8	53
97	Damage mechanics of cement concrete modeled as a four-phase composite. Composites Part B: Engineering, 2014, 65, 124-130.	12.0	33
98	Fourier series expansion in non-orthogonal coordinate system for the homogenization of linear viscoelastic periodic composites. Composites Part B: Engineering, 2013, 54, 241-245.	12.0	21
99	Homogenised properties of composite materials in large deformations. Composite Structures, 2013, 103, 9-17.	5.8	17
100	Numerical collapse load of multi-span masonry arch structures with FRP reinforcement. Composites Part B: Engineering, 2013, 54, 71-84.	12.0	57
101	Limit analysis of masonry arches with finite compressive strength and externally bonded reinforcement. Composites Part B: Engineering, 2012, 43, 3131-3145.	12.0	52
102	Limit analysis of FRP strengthened masonry arches via nonlinear and linear programming. Composites Part B: Engineering, 2012, 43, 439-446.	12.0	53
103	A theoretical and numerical stability analysis for composite micro-structures by using homogenization theory. Composites Part B: Engineering, 2011, 42, 382-401.	12.0	66
104	Design Optimization of Road Continuous Girder Bridges. , 2010, , .		0
105	Micromechanical analysis of periodic composites by prescribing the average stress. Annals of Solid and Structural Mechanics, 2010, 1, 117-137.	0.5	14
106	Limit analysis of masonry arches with externally bonded FRP reinforcements. Computer Methods in Applied Mechanics and Engineering, 2006, 196, 247-260.	6.6	55
107	Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites. Computers and Structures, 2006, 84, 2200-2211.	4.4	77
108	Hashinâ€"Shtrikman Based FE Analysis of the Elastic Behaviour of Finite Random Composite Bodies. International Journal of Fracture, 2006, 137, 261-273.	2.2	38

#	Article	IF	CITATIONS
109	FE analysis of stress and strain fields in finite random composite bodies. Journal of the Mechanics and Physics of Solids, 2005, 53, 1505-1522.	4.8	50
110	Analysis of the Influence of Incremental Material Response on the Structural Stability. Mechanics of Advanced Materials and Structures, 2005, 12, 363-377.	2.6	14
111	Non-local constitutive equations for functionally graded materials. Mechanics of Materials, 2004, 36, 1195-1206.	3.2	24
112	Boundary-layer corrections for stress and strain fields in randomly heterogeneous materials. Journal of the Mechanics and Physics of Solids, 2003, 51, 1075-1088.	4.8	50
113	Micro- and macro-failure models of heterogeneous media with micro-structure. Simulation Modelling Practice and Theory, 2003, 11, 433-448.	3.8	8
114	Non-local constitutive response of a random laminate subjected to configuration-dependent body force. Journal of the Mechanics and Physics of Solids, 2001, 49, 431-444.	4.8	62
115	Non-local effective relations for fibre-reinforced composites loaded by configuration-dependent body forces. Journal of the Mechanics and Physics of Solids, 2001, 49, 2705-2717.	4.8	14
116	Bounds on non-local effective relations for random composites loaded by configuration-dependent body force. Journal of the Mechanics and Physics of Solids, 2000, 48, 1827-1849.	4.8	48
117	Tensile stiffness and strength of fiber-reinforced concrete. Journal of the Mechanics and Physics of Solids, 2000, 48, 1987-2008.	4.8	15
118	Bounds on the overall properties of composites with debonded frictionless interfaces. Mechanics of Materials, 1998, 28, 23-32.	3.2	38
119	On methods for bounding the overall properties of periodic piezoelectric fibrous composites. Journal of the Mechanics and Physics of Solids, 1997, 45, 1329-1356.	4.8	43
120	Homogenization technique and damage model for old masonry material. International Journal of Solids and Structures, 1997, 34, 3191-3208.	2.7	185
121	Analytical Expressions for the Relaxation Moduli of Linear Viscoelastic Composites With Periodic Microstructure. Journal of Applied Mechanics, Transactions ASME, 1995, 62, 786-793.	2.2	50