Katarzyna Turnau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6642399/publications.pdf

Version: 2024-02-01

85 papers

4,754 citations

34 h-index 98753 67 g-index

88 all docs 88 docs citations

88 times ranked 4268 citing authors

#	Article	IF	CITATIONS
1	Biotization of highbush blueberry with ericoid mycorrhizal and endophytic fungi improves plant growth and vitality. Applied Microbiology and Biotechnology, 2022, 106, 4775-4786.	1.7	11
2	Mycology: Protein Control of Fungal Nanoparticle Formation. Current Biology, 2021, 31, R67-R69.	1.8	O
3	Cooling effect of fungal stromata in the <i>Dactylis-Epichloë-Botanophila</i> symbiosis. Communicative and Integrative Biology, 2021, 14, 151-157.	0.6	3
4	Extraordinary Multi-Organismal Interactions Involving Bacteriophages, Bacteria, Fungi, and Rotifers: Quadruple Microbial Trophic Network in Water Droplets. International Journal of Molecular Sciences, 2021, 22, 2178.	1.8	7
5	The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. Science of the Total Environment, 2021, 768, 144666.	3.9	19
6	Phytohormone based biostimulant combined with plant growth promoting endophytic fungus enhances Ni phytoextraction of Noccaea goesingensis. Science of the Total Environment, 2021, 789, 147950.	3.9	6
7	Transcriptome Response of Metallicolous and a Non-Metallicolous Ecotypes of Noccaea goesingensis to Nickel Excess. Plants, 2020, 9, 951.	1.6	2
8	Microbes of XVI century Arrases of Krakow Royal Castle. Microbiological Research, 2020, 238, 126485.	2.5	4
9	Symbiotic microbes of Saxifraga stellaris ssp. alpigena from the copper creek of Schwarzwand (Austrian Alps) enhance plant tolerance to copper. Chemosphere, 2019, 228, 183-194.	4.2	12
10	Are Fungal Endophytes Merely Mycorrhizal Copycats? The Role of Fungal Endophytes in the Adaptation of Plants to Metal Toxicity. Frontiers in Microbiology, 2019, 10, 371.	1.5	47
11	Arbuscular mycorrhizal fungi from petroleum-impacted sites in the Polish Carpathians. International Biodeterioration and Biodegradation, 2019, 138, 50-56.	1.9	5
12	Acclimation of the photosynthetic apparatus and alterations in sugar metabolism in response to inoculation with endophytic fungi. Plant, Cell and Environment, 2019, 42, 1408-1423.	2.8	26
13	<i>Mucor</i> sp.—An endophyte of Brassicaceae capable of surviving in toxic metalâ€rich sites. Journal of Basic Microbiology, 2019, 59, 24-37.	1.8	30
14	Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment?. Mycorrhiza, 2018, 28, 235-246.	1.3	50
15	Paper material containing Ag cations immobilised in faujasite: synthesis, characterisation and antibacterial effects. Cellulose, 2018, 25, 1353-1364.	2.4	3
16	Editorial: Mycorrhizosphere Communication: Mycorrhizal Fungi and Endophytic Fungus-Plant Interactions. Frontiers in Microbiology, 2018, 9, 3015.	1.5	18
17	Incidence, Identification, and Mycoparasitic Activity of <i>Clonostachys epichloë</i> , a Hyperparasite of the Fungal Endophyte <i>Epichloë typhina</i> . Plant Disease, 2018, 102, 1973-1980.	0.7	11
18	Expansion of a holoparasitic plant, Orobanche lutea (Orobanchaceae), in post-industrial areas - a possible Zn effect. Science of the Total Environment, 2018, 639, 714-724.	3.9	8

#	Article	IF	Citations
19	Developing Sustainable Agromining Systems in Agricultural Ultramafic Soils for Nickel Recovery. Frontiers in Environmental Science, 2018, 6, .	1.5	63
20	The Role of Strigolactone in the Cross-Talk Between Arabidopsis thaliana and the Endophytic Fungus Mucor sp Frontiers in Microbiology, 2018, 9, 441.	1.5	66
21	Effect of Epichloë typhina fungal endophyte on the diversity and incidence of other fungi in Puccinellia distans wild grass seeds. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 228, 60-64.	0.6	8
22	Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. Mycorrhiza, 2017, 27, 499-511.	1.3	55
23	Antimicrobial Properties of Silver Cations Substituted to Faujasite Mineral. Nanomaterials, 2017, 7, 240.	1.9	12
24	Chapter 29 Mycorrhizal Fungi and Accompanying Microorganisms in Improving Phytoremediation Techniques. Mycology, 2017, , 419-432.	0.5	2
25	Lipids, hemoproteins and carotenoids in alive Rhodotorula mucilaginosa cells under pesticide decomposition – Raman imaging study. Chemosphere, 2016, 164, 1-6.	4.2	9
26	Fungi as deterioration agents of historic glass plate negatives of Brandys family collection. International Biodeterioration and Biodegradation, 2016, 115, 133-140.	1.9	10
27	Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiology and Biochemistry, 2016, 107, 264-272.	2.8	37
28	Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. Journal of Environmental Radioactivity, 2015, 141, 57-61.	0.9	11
29	Microscopic Processes Ruling the Bioavailability of Zn to Roots of <i>Euphorbia pithyusa</i> L. Pioneer Plant. Environmental Science & Euphorbia pithyusa	4.6	42
30	Interplay between carotenoids, hemoproteins and the "life band―origin studied in live Rhodotorula mucilaginosa cells by means of Raman microimaging. Analyst, The, 2015, 140, 1809-1813.	1.7	4
31	Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant and Soil, 2015, 390, 129-142.	1.8	76
32	Antifungal properties of silver nanoparticles against indoor mould growth. Science of the Total Environment, 2015, 521-522, 305-314.	3.9	98
33	Effect of combined microbes on plant tolerance to Zn–Pb contaminations. Environmental Science and Pollution Research, 2015, 22, 19142-19156.	2.7	32
34	The diversity of endophytic fungi in Verbascum lychnitis from industrial areas. Symbiosis, 2014, 64, 139-147.	1.2	18
35	Assessment of the applicability of a "toolbox―designed for microbially assisted phytoremediation: the case study at Ingurtosu mining site (Italy). Environmental Science and Pollution Research, 2014, 21, 6939-6951.	2.7	27
36	Mycorrhiza of Dryopteris carthusiana in southern Poland. Acta Mycologica, 2014, 34, 305-314.	0.3	5

#	Article	IF	Citations
37	Arbuscular mycorrhiza of plants from the Mountain Botanical Garden in Zakopane. Acta Mycologica, 2014, 40, 25-41.	0.3	6
38	Heavy metal content and localization in mycorrhizal Euphorbia cyparissias zinc wastes in southern Poland. Acta Societatis Botanicorum Poloniae, 2014, 67, 105-113.	0.8	71
39	Role of mycorhizal links between plants in establishment of liverworts thalli in natural habitats. Acta Societatis Botanicorum Poloniae, 2014, 68, 63-68.	0.8	20
40	Arbuscular mycorrhiza and plant succesion on zinc smelter spoil heap in Katowice-WeÅ, nowiec. Acta Societatis Botanicorum Poloniae, 2014, 70, 153-158.	0.8	21
41	Heavy metal binding properties of Pinus sylvestris mycorrhizas from industrial wastes. Acta Societatis Botanicorum Poloniae, 2014, 71, 253-261.	0.8	17
42	Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environmental Pollution, 2013, 175, 100-109.	3.7	35
43	Mycorrhizal fungi modify element distribution in gametophytes and sporophytes of a fern Pellaea viridis from metaliferous soils. Chemosphere, 2013, 92, 1267-1273.	4.2	8
44	Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza, 2012, 22, 493-499.	1.3	16
45	Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L Environmental Pollution, 2012, 168, 121-130.	3.7	92
46	Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 2012, 22, 149-156.	1.3	103
47	Mycorrhizal-Based Phytostabilization of Zn–Pb Tailings: Lessons from the Trzebionka Mining Works (Southern Poland). Soil Biology, 2012, , 327-348.	0.6	17
48	The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution, 2011, 159, 3730-3738.	3.7	73
49	In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst, The, 2011, 136, 1109.	1.7	84
50	Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Societatis Botanicorum Poloniae, 2011, 77, 149-156.	0.8	28
51	Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza, 2010, 20, 293-306.	1.3	66
52	Arbuscular mycorrhiza of Arnica montana under field conditionsâ€"conventional and molecular studies. Mycorrhiza, 2010, 20, 551-557.	1.3	11
53	Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L Mycorrhiza, 2010, 20, 497-504.	1.3	59
54	The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 2010, 20, 445-457.	1.3	79

#	Article	IF	Citations
55	Symbiosis research, technology, and education: Proceedings of the 6th International Symbiosis Society Congress held in Madison Wisconsin, USA, August 2009. Symbiosis, 2010, 51, 1-12.	1.2	1
56	Metal uptake by xerothermic plants introduced into Zn-Pb industrial wastes. Plant and Soil, 2010, 337, 299-311.	1.8	36
57	Terpenoids and phenolics from Inula ensifolia. Biochemical Systematics and Ecology, 2010, 38, 232-235.	0.6	15
58	Elemental composition of <i>Physarum compressum</i> Alb. et Schw. sporocarps and their structures cultivated on rabbit dung and agar substrates. Microscopy Research and Technique, 2010, 73, 1134-1142.	1.2	7
59	137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. Journal of Environmental Radioactivity, 2010, 101, 706-711.	0.9	52
60	Role of Mycorrhizal Colonization in Plant Establishment on an Alkaline Gold Mine Tailing. International Journal of Phytoremediation, 2010, 13, 185-205.	1.7	25
61	Monte Carlo Simulation to Determine Geometry Effects on Quantitative X-ray Microanalysis in Plant Cell Walls Using Gelatin Standards. AIP Conference Proceedings, 2010, , .	0.3	1
62	Arbuscular Mycorrhiza, Heavy Metal, and Salt Tolerance. Soil Biology, 2010, , 87-111.	0.6	21
63	Metal Tolerant Mycorrhizal Plants: A Review from the Perspective on Industrial Waste in Temperate Region., 2010,, 257-276.		9
64	Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza, 2009, 19, 113-123.	1.3	83
65	Arbuscular Mycorrhizal and Dark Septate Endophyte Colonization along Altitudinal Gradients in the Tatra Mountains. Arctic, Antarctic, and Alpine Research, 2009, 41, 272-279.	0.4	29
66	Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes–new solution for waste revegetation. Plant and Soil, 2008, 305, 267-280.	1.8	53
67	Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environmental and Experimental Botany, 2007, 61, 117-123.	2.0	52
68	Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiological Research, 2007, 162, 219-228.	2.5	49
69	Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: implications for restoration practices. Plant and Soil, 2007, 298, 219.	1.8	34
70	Changes in vacuolar and mitochondrial motility and tubularity in response to zinc in a Paxillus involutus isolate from a zinc-rich soil. Fungal Genetics and Biology, 2006, 43, 155-163.	0.9	15
71	ROLE OF MYCORRHIZAL FUNGI IN PHYTOREMEDIATION AND TOXICITY MONITORING OF HEAVY METAL RICH INDUSTRIAL WASTES IN SOUTHERN POLAND. , 2006, , 533-551.		29
72	Fungal Activity as Determined by Microscale Methods with Special Emphasis on Interactions with Heavy Metals. Mycology, 2005, , 287-305.	0.5	13

#	Article	IF	Citations
73	The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 2003, 37, 1-16.	2.3	786
74	Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 2003, 13, 185-190.	1.3	142
75	Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. Journal of Experimental Botany, 2002, 53, 1177-1185.	2.4	174
76	Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza, 2002, 12, 153-159.	1.3	82
77	Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza, 2001, 10, 169-174.	1.3	146
78	Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycological Research, 2000, 104, 338-344.	2.5	91
79	Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research, 2000, 104, 1366-1371.	2.5	128
80	Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 1997, 7, 139-153.	1.3	732
81	Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycological Research, 1996, 100, 16-22.	2.5	79
82	Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytologist, 1993, 123, 313-324.	3.5	125
83	Comparative study of elongated and globose Woronin bodies using electron energy loss spectroscopy (EELS) and imaging (ESI). Mycological Research, 1993, 97, 1499-1504.	2.5	6
84	<i>Paxillus involutus â€" Pinus sylvestris</i> Mycorrhizae from Heavily Polluted Forest Botanica Acta, 1993, 106, 213-219.	1.6	83
85	The influence of industrial dusts on the mycorrhizal status of plants in Pino-Quercetum forest. Agriculture, Ecosystems and Environment, 1990, 28, 529-533.	2.5	2