Leen Delang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6642200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Posaconazole inhibits multiple steps of the alphavirus replication cycle. Antiviral Research, 2022, 197, 105223.	1.9	4
2	Perturbation of Alphavirus and Flavivirus Infectivity by Components of the Bacterial Cell Wall. Journal of Virology, 2022, 96, jvi0006022.	1.5	3
3	Biodistribution and environmental safety of a live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Molecular Therapy - Methods and Clinical Development, 2022, 25, 215-224.	1.8	5
4	HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect. Antiviral Research, 2022, 202, 105311.	1.9	8
5	Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nature Communications, 2021, 12, 916.	5.8	80
6	Repurposing Drugs for Mayaro Virus: Identification of EIDD-1931, Favipiravir and Suramin as Mayaro Virus Inhibitors. Microorganisms, 2021, 9, 734.	1.6	13
7	Itraconazole for COVID-19: preclinical studies and a proof-of-concept randomized clinical trial. EBioMedicine, 2021, 66, 103288.	2.7	21
8	Favipiravir Does Not Inhibit Chikungunya Virus Replication in Mosquito Cells and Aedes aegypti Mosquitoes. Microorganisms, 2021, 9, 944.	1.6	4
9	Establishment of <i>Culex modestus</i> in Belgium and a Glance into the Virome of Belgian Mosquito Species. MSphere, 2021, 6, .	1.3	19
10	Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine, 2021, 68, 103403.	2.7	102
11	Structural Insights into the Mechanisms of Action of Functionally Distinct Classes of Chikungunya Virus Nonstructural Protein 1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2021, 65, e0256620.	1.4	9
12	Assessing <i>In Vitro</i> Resistance Development in Enterovirus A71 in the Context of Combination Antiviral Treatment. ACS Infectious Diseases, 2021, 7, 2801-2806.	1.8	6
13	Comparative analysis of the molecular mechanism of resistance to vapendavir across a panel of picornavirus species. Antiviral Research, 2021, 195, 105177.	1.9	10
14	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
15	Antiviral drug discovery against arthritogenic alphaviruses: Tools and molecular targets. Biochemical Pharmacology, 2020, 174, 113777.	2.0	14
16	Scaffold Simplification Strategy Leads to a Novel Generation of Dual Human Immunodeficiency Virus and Enterovirus-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 349-368.	2.9	20
17	Favipiravir at high doses has potent antiviral activity in SARS-CoV-2â^'infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26955-26965.	3.3	240
18	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705

#	Article	IF	CITATIONS
19	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, 11, 5838.	5.8	225
20	Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nature Communications, 2020, 11, 4253.	5.8	43
21	Antiviral Strategies against Arthritogenic Alphaviruses. Microorganisms, 2020, 8, 1365.	1.6	12
22	Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses, 2020, 12, 964.	1.5	15
23	Novel Class of Chikungunya Virus Small Molecule Inhibitors That Targets the Viral Capping Machinery. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	15
24	Medical treatment options for COVID-19. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 209-214.	0.4	39
25	Identification of 2-(4-(Phenylsulfonyl)piperazine-1-yl)pyrimidine Analogues as Novel Inhibitors of Chikungunya Virus. ACS Medicinal Chemistry Letters, 2020, 11, 906-912.	1.3	16
26	Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Science Translational Medicine, 2020, 12, .	5.8	25
27	Multitarget CFTR Modulators Endowed with Multiple Beneficial Side Effects for Cystic Fibrosis Patients: Toward a Simplified Therapeutic Approach. Journal of Medicinal Chemistry, 2019, 62, 10833-10847.	2.9	9
28	Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome, 2019, 7, 121.	4.9	109
29	Antiviral Compounds from <i>Codiaeum peltatum</i> Targeted by a Multi-informative Molecular Networks Approach. Journal of Natural Products, 2019, 82, 330-340.	1.5	28
30	Modifications in the branched arms of a class of dual inhibitors of HIV and EV71 replication expand their antiviral spectrum. Antiviral Research, 2019, 168, 210-214.	1.9	9
31	Chikungunya virus drug discovery: still a long way to go?. Expert Opinion on Drug Discovery, 2019, 14, 855-866.	2.5	21
32	A novel druggable interprotomer pocket in the capsid of rhino- and enteroviruses. PLoS Biology, 2019, 17, e3000281.	2.6	36
33	Viral engagement with host receptors blocked by a novel class of tryptophan dendrimers that targets the 5-fold-axis of the enterovirus-A71 capsid. PLoS Pathogens, 2019, 15, e1007760.	2.1	26
34	A Viral Polymerase Inhibitor Reduces Zika Virus Replication in the Reproductive Organs of Male Mice. International Journal of Molecular Sciences, 2019, 20, 2122.	1.8	11
35	Antiviral effects of selected nucleoside analogues against human parechoviruses A1 and A3. Antiviral Research, 2019, 162, 51-53.	1.9	6
36	A novel class of small molecule inhibitors targeting the chikungunya virus capping machinery with a high barrier to resistance. Access Microbiology, 2019, 1, .	0.2	0

#	Article	IF	CITATIONS
37	Rational modifications on a benzylidene-acrylohydrazide antiviral scaffold, synthesis and evaluation of bioactivity against Chikungunya virus. European Journal of Medicinal Chemistry, 2018, 149, 56-68.	2.6	20
38	Inhibition of the Replication of Different Strains of Chikungunya Virus by 3-Aryl-[1,2,3]triazolo[4,5- <i>d</i>]pyrimidin-7(6 <i>H</i>)-ones. ACS Infectious Diseases, 2018, 4, 605-619.	1.8	18
39	Design, synthesis and evaluation against Chikungunya virus of novel small-molecule antiviral agents. Bioorganic and Medicinal Chemistry, 2018, 26, 869-874.	1.4	16
40	Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Research, 2018, 153, 85-94.	1.9	295
41	Antiviral treatment efficiently inhibits chikungunya virus infection in the joints of mice during the acute but not during the chronic phase of the infection. Antiviral Research, 2018, 149, 113-117.	1.9	30
42	CCL20, a direct-acting pro-angiogenic chemokine induced by hepatitis C virus (HCV): Potential role in HCV-related liver cancer. Experimental Cell Research, 2018, 372, 168-177.	1.2	41
43	PI4KIII inhibitor enviroxime impedes the replication of the hepatitis C virus by inhibiting PI3 kinases. Journal of Antimicrobial Chemotherapy, 2018, 73, 3375-3384.	1.3	4
44	Antiplasmodial, anti-chikungunya virus and antioxidant activities of 64 endemic plants from the Mascarene Islands. International Journal of Antimicrobial Agents, 2018, 52, 622-628.	1.1	32
45	Differential Transmission of Antiviral Drug-Resistant Chikungunya Viruses by <i>Aedes</i> Mosquitoes. MSphere, 2018, 3, .	1.3	8
46	Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antiviral Research, 2017, 140, 37-44.	1.9	43
47	Discovery of Multitarget Agents Active as Broad-Spectrum Antivirals and Correctors of Cystic Fibrosis Transmembrane Conductance Regulator for Associated Pulmonary Diseases. Journal of Medicinal Chemistry, 2017, 60, 1400-1416.	2.9	17
48	Glutathione is a highly efficient thermostabilizer of poliovirus Sabin strains. Vaccine, 2017, 35, 1370-1372.	1.7	8
49	Chikungunya virus infections: time to act, time to treat. Current Opinion in Virology, 2017, 24, 25-30.	2.6	39
50	Antiviral activity of [1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Research, 2017, 144, 216-222.	1.9	44
51	Understanding the Mechanism of the Broad-Spectrum Antiviral Activity of Favipiravir (T-705): Key Role of the F1 Motif of the Viral Polymerase. Journal of Virology, 2017, 91, .	1.5	62
52	Protein kinases C as potential host targets for the inhibition of chikungunya virus replication. Antiviral Research, 2017, 139, 79-87.	1.9	20
53	New class of early-stage enterovirus inhibitors with a novel mechanism of action. Antiviral Research, 2017, 147, 67-74.	1.9	14
54	Replication of the Zika virus in different iPSC-derived neuronal cells and implications to assess efficacy of antivirals. Antiviral Research, 2017, 145, 82-86.	1.9	41

#	Article	IF	CITATIONS
55	Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorganic and Medicinal Chemistry, 2017, 25, 327-337.	1.4	34
56	In vitro Assay to Assess Efficacy of Potential Antiviral Compounds against Enterovirus D68. Bio-protocol, 2017, 7, e2183.	0.2	2
57	Optimization of a Class of Tryptophan Dendrimers That Inhibit HIV Replication Leads to a Selective, Specific, and Low-Nanomolar Inhibitor of Clinical Isolates of Enterovirus A71. Antimicrobial Agents and Chemotherapy, 2016, 60, 5064-5067.	1.4	18
58	Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochemical Pharmacology, 2016, 120, 15-21.	2.0	11
59	The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection. Scientific Reports, 2016, 6, 31819.	1.6	88
60	Antiviral Strategies Against Chikungunya Virus. Methods in Molecular Biology, 2016, 1426, 243-253.	0.4	24
61	Exploring the importance of zinc binding and steric/hydrophobic factors in novel HCV replication inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1196-1199.	1.0	3
62	Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death. Journal of Natural Products, 2016, 79, 675-679.	1.5	16
63	Inhibition of Chikungunya Virus-Induced Cell Death by Salicylate-Derived Bryostatin Analogues Provides Additional Evidence for a PKC-Independent Pathway. Journal of Natural Products, 2016, 79, 680-684.	1.5	28
64	The future of antivirals. Current Opinion in Infectious Diseases, 2015, 28, 596-602.	1.3	56
65	Understanding the molecular mechanism of host-based statin resistance in hepatitis C virus replicon containing cells. Biochemical Pharmacology, 2015, 96, 190-201.	2.0	2
66	Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein. Cell Reports, 2015, 10, 600-615.	2.9	201
67	Towards antivirals against chikungunya virus. Antiviral Research, 2015, 121, 59-68.	1.9	84
68	Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication. Journal of Natural Products, 2015, 78, 1277-1283.	1.5	62
69	Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. RSC Advances, 2015, 5, 85938-85949.	1.7	21
70	Antiviral Activity of Broad-Spectrum and Enterovirus-Specific Inhibitors against Clinical Isolates of Enterovirus D68. Antimicrobial Agents and Chemotherapy, 2015, 59, 7782-7785.	1.4	54
71	Are statins a viable option for the treatment of infections with the hepatitis C virus?. Antiviral Research, 2014, 105, 92-99.	1.9	12
72	Identification of [1,2,3]Triazolo[4,5- <i>d</i>]pyrimidin-7(6 <i>H</i>)-ones as Novel Inhibitors of Chikungunya Virus Replication. Journal of Medicinal Chemistry, 2014, 57, 4000-4008.	2.9	60

#	Article	IF	CITATIONS
73	Structure–activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorganic and Medicinal Chemistry, 2014, 22, 6014-6025.	1.4	43
74	Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. Journal of Antimicrobial Chemotherapy, 2014, 69, 2770-2784.	1.3	187
75	Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fìtoterapìâ, 2014, 97, 87-91.	1.1	50
76	Hepatitis C Virus-Specific Directly Acting Antiviral Drugs. Current Topics in Microbiology and Immunology, 2013, 369, 289-320.	0.7	27
77	Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Research, 2013, 98, 12-18.	1.9	87
78	Selecting and Characterizing Drug-Resistant Hepatitis C Virus Replicon. Methods in Molecular Biology, 2013, 1030, 93-103.	0.4	3
79	The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology, 2013, 57, 492-504.	3.6	66
80	Diterpenoids from Euphorbiaceae with Potent Anti-CHIKV and Anti-HIV Activities: Are these Antiviral Properties Correlated?. Planta Medica, 2013, 79, .	0.7	2
81	Prostratin and 12- <i>O</i> -Tetradecanoylphorbol 13-Acetate Are Potent and Selective Inhibitors of Chikungunya Virus Replication. Journal of Natural Products, 2012, 75, 2183-2187.	1.5	87
82	In vitro selection and characterization of HCV replicons resistant to multiple non-nucleoside polymerase inhibitors. Journal of Hepatology, 2012, 56, 41-48.	1.8	16
83	The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochemical Pharmacology, 2012, 84, 1400-1408.	2.0	61
84	Identification of a novel resistance mutation for benzimidazole inhibitors of the HCV RNA-dependent RNA polymerase. Antiviral Research, 2012, 93, 30-38.	1.9	19
85	482 IN VITRO COMBINATION THERAPY WITH TEGOBUVIR (GS-9190) IS HIGHLY EFFICIENT IN CURING CELLS FROM HCV REPLICON AND IN DELAYING/PREVENTING THE DEVELOPMENT OF ANTIVIRAL RESISTANCE. Journal of Hepatology, 2011, 54, S197-S198.	1.8	1
86	Comparative Study of the Genetic Barriers and Pathways towards Resistance of Selective Inhibitors of Hepatitis C Virus Replication. Antimicrobial Agents and Chemotherapy, 2011, 55, 4103-4113.	1.4	54
87	Reply:. Hepatology, 2010, 51, 345-345.	3.6	0
88	Antiviral Therapy for Hepatitis C Virus: Beyond the Standard of Care. Viruses, 2010, 2, 826-866.	1.5	35
89	Statins potentiate the <i>in vitro</i> anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology, 2009, 50, 6-16.	3.6	104
90	Itraconazole for COVID-19: Preclinical Studies and a Proof-of-Concept Pilot Clinical Study. SSRN Electronic Journal, 0, , .	0.4	1