Xuecheng Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6642146/xuecheng-chen-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

132 papers

4,266 citations

36 h-index

59 g-index

141 ext. papers

5,153 ext. citations

6.5 avg, IF

5.83 L-index

#	Paper	IF	Citations
132	Intumescent flame retardants inspired template-assistant synthesis of N/P dual-doped three-dimensional porous carbons for high-performance supercapacitors <i>Journal of Colloid and Interface Science</i> , 2022 , 613, 35-46	9.3	2
131	One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors. <i>Renewable Energy</i> , 2022 , 185, 187-195	8.1	4
130	Diverse-shaped tin dioxide nanoparticles within a plastic waste-derived three-dimensional porous carbon framework for super stable lithium-ion storage <i>Science of the Total Environment</i> , 2022 , 815, 157	2 900	1
129	Fabrication and characterization of a TiBs@MCN cable-like photocatalyst with high photocatalytic performance under visible light irradiation. <i>New Journal of Chemistry</i> , 2022 , 46, 6319-6329	3.6	O
128	Porous silica matrix as an efficient strategy to boosted photocatalytic performance of titania/carbon composite. <i>Diamond and Related Materials</i> , 2022 , 125, 109027	3.5	1
127	Branched Poly(l-lysine)-Derived Nitrogen-Containing Porous Carbon Flake as the Metal-Free Electrocatalyst toward Efficient Oxygen Reduction Reaction. <i>ACS Applied Energy Materials</i> , 2021 , 4, 331	7-3326	57
126	Investigation of the microstructure on the nanoporous carbon based capacitive performance. <i>Microporous and Mesoporous Materials</i> , 2021 , 310, 110629	5.3	2
125	Highly efficient conversion of waste plastic into thin carbon nanosheets for superior capacitive energy storage. <i>Carbon</i> , 2021 , 171, 819-828	10.4	24
124	Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance. <i>Energy</i> , 2021 , 217, 119399	7.9	5
123	Improved performance in lithium ion battery of CNT-Fe3O4@graphene induced by three-dimensional structured construction. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 612, 126014	5.1	9
122	Preparation of Fe3O4@polypyrrole composite materials for asymmetric supercapacitor applications. <i>New Journal of Chemistry</i> , 2021 , 45, 16011-16018	3.6	7
121	The in situ construction of three-dimensional corellhell-structured TiO2@PPy/rGO nanocomposites for improved supercapacitor electrode performance. <i>New Journal of Chemistry</i> , 2021 , 45, 1092-1099	3.6	10
120	Hollow carbon spheres loaded with uniform dispersion of copper oxide nanoparticles for anode in lithium- ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 853, 156700	5.7	10
119	Flexible Films as Anode Materials Based on rGO and TiO2/MnO2 in Li-Ion Batteries Free of Non-Active Agents. <i>Energies</i> , 2021 , 14, 8168	3.1	1
118	One-pot green mass production of hierarchically porous carbon via a recyclable salt-templating strategy. <i>Green Energy and Environment</i> , 2020 ,	5.7	5
117	Controllable Carbonization of Plastic Waste into Three-Dimensional Porous Carbon Nanosheets by Combined Catalyst for High Performance Capacitor. <i>Nanomaterials</i> , 2020 , 10,	5.4	14
116	Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage. <i>Science of the Total Environment</i> , 2020 , 723, 138055	10.2	30

115	A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. <i>Chemical Communications</i> , 2020 , 56, 9142-9145	5.8	20
114	High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. <i>Scientific Reports</i> , 2020 , 10, 3518	4.9	24
113	Deep insight into the pore size distribution of N-doped porous carbon materials on electrochemical energy storage and CO2 sorption. <i>Diamond and Related Materials</i> , 2020 , 105, 107802	3.5	14
112	Sustainable recycling of waste polystyrene into hierarchical porous carbon nanosheets with potential applications in supercapacitors. <i>Nanotechnology</i> , 2020 , 31, 035402	3.4	23
111	Reactive construction of catalytic carbonization system in PP/C60/Ni(OH)2 nanocomposites for simultaneously improving thermal stability, flame retardancy and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105722	8.4	11
110	Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties. **Composites Science and Technology, 2020, 188, 107988**	8.6	56
109	Insight into the Effect of ZIF-8 Particle Size on the Performance in Nanocarbon-Based Supercapacitors. <i>Chemistry - A European Journal</i> , 2020 , 26, 16328-16337	4.8	5
108	Na3PO4 assistant dispersion of nano-CaCO3 template to enhance electrochemical interface: N/O/P co-doped porous carbon hybrids towards high-performance flexible supercapacitors. <i>Composites Part B: Engineering</i> , 2020 , 199, 108256	10	14
107	One-Step Synergistic Effect to Produce Two-Dimensional N-Doped Hierarchical Porous Carbon Nanosheets for High-Performance Flexible Supercapacitors. <i>ACS Applied Energy Materials</i> , 2020 , 3, 8562-	8572	12
106	Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte. <i>Materials</i> , 2020 , 13,	3.5	8
105	Eucalyptus derived heteroatom-doped hierarchical porous carbons as electrode materials in supercapacitors. <i>Scientific Reports</i> , 2020 , 10, 14631	4.9	10
104	Nitrogen/Oxygen Enriched Hierarchical Porous Carbons Derived from Waste Peanut Shells Boosting Performance of Supercapacitors. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000450	6.4	6
103	Nitrogen-Doped Porous Graphene-Based Aerogels toward Efficient Heavy Metal Ion Adsorption and Supercapacitor Applications. <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 1900534	2.5	19
102	Three dimensional graphene/carbonized metal-organic frameworks based high-performance supercapacitor. <i>Carbon</i> , 2020 , 157, 55-63	10.4	35
101	Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48338	2.9	22
100	Nanosized carbon black as synergist in PP/POE-MA/IFR system for simultaneously improving thermal, electrical and mechanical properties. <i>Journal of Thermal Analysis and Calorimetry</i> , 2020 , 139, 1091-1098	4.1	10
99	Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors. <i>Chemosphere</i> , 2020 , 253, 126755	8.4	32
98	Expanded graphite assistant construction of gradient-structured char layer in PBS/Mg(OH)2 composites for improving flame retardancy, thermal stability and mechanical properties. Composites Part B: Engineering, 2019, 177, 107402	10	27

97	Well-Designed Porous Graphene Flakes for Lithium-Ion Batteries with Outstanding Rate Performance. <i>Langmuir</i> , 2019 , 35, 12613-12619	4	8
96	Three-dimensional porous carbon with big cavities and hierarchical pores derived from leek for superior electrochemical capacitive energy storage. <i>Diamond and Related Materials</i> , 2019 , 98, 107522	3.5	7
95	Large-Scale and Low-Cost Motivation of Nitrogen-Doped Commercial Activated Carbon for High-Energy-Density Supercapacitor. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4234-4243	6.1	26
94	Multifunctional nitrogen-doped nanoporous carbons derived from metalBrganic frameworks for efficient CO2 storage and high-performance lithium-ion batteries. <i>New Journal of Chemistry</i> , 2019 , 43, 10405-10412	3.6	11
93	Synergistic effect of nanoscale carbon black and ammonium polyphosphate on improving thermal stability and flame retardancy of polypropylene: A reactive network for strengthening carbon layer. <i>Composites Part B: Engineering</i> , 2019 , 174, 107038	10	17
92	Ultrathin NiO confined within hollow carbon sphere for efficient electrochemical energy storage. Journal of Alloys and Compounds, 2019, 797, 702-709	5.7	8
91	Selective Synthesis of Magnetite Nanospheres with Controllable Morphologies on CNTs and Application to Lithium-Ion Batteries. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1800924	1.6	4
90	Recent progress in controlled carbonization of (waste) polymers. <i>Progress in Polymer Science</i> , 2019 , 94, 1-32	29.6	105
89	Formation of ultra-small Mn3O4 nanoparticles trapped in nanochannels of hollow carbon spheres by nanoconfinement with excellent supercapacitor performance. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 13675-13683	6.7	13
88	Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications. <i>Nanotechnology</i> , 2019 , 30, 295703	3.4	23
87	Symmetric Supercapacitors Based on MnOOH-Coated Nanoporous Carbon toward High Energy-Storage Performance. <i>ChemElectroChem</i> , 2019 , 6, 2302-2307	4.3	6
86	Novel strategy for preparation of highly porous carbon sheets derived from polystyrene for supercapacitors. <i>Diamond and Related Materials</i> , 2019 , 95, 5-13	3.5	17
85	Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world" mixed waste plastics toward excellent-performance supercapacitors. <i>Waste Management</i> , 2019 , 87, 691-700	8.6	39
84	Evaluation of Nanoporous Carbon Synthesized from Direct Carbonization of a Metal?Organic Complex as a Highly Effective Dye Adsorbent and Supercapacitor. <i>Nanomaterials</i> , 2019 , 9,	5.4	11
83	Nitrogen-doped porous carbon embedded with cobalt nanoparticles for excellent oxygen reduction reaction. <i>Journal of Colloid and Interface Science</i> , 2019 , 546, 344-350	9.3	11
82	Sustainable polylysine conversion to nitrogen-containing porous carbon flakes: Potential application in supercapacitors. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 48214	2.9	11
81	Interconnected nanoporous carbon structure delivering enhanced mass transport and conductivity toward exceptional performance in supercapacitor. <i>Journal of Power Sources</i> , 2019 , 435, 226811	8.9	16
80	Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. <i>Chemical Engineering Journal</i> , 2019 , 360, 250-259	14.7	95

(2015-2019)

79	From polystyrene waste to porous carbon flake and potential application in supercapacitor. <i>Waste Management</i> , 2019 , 85, 333-340	8.6	41
78	Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. <i>Electrochimica Acta</i> , 2019 , 294, 183-191	6.7	54
77	Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. <i>Journal of Power Sources</i> , 2019 , 412, 1-9	8.9	100
76	Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. <i>Bioresource Technology</i> , 2019 , 272, 92-98	11	41
75	Hierarchical porous carbon materials from nanosized metal-organic complex for high-performance symmetrical supercapacitor. <i>Electrochimica Acta</i> , 2018 , 269, 580-589	6.7	40
74	Cobalt/Carbon Nanocomposite as Oxygen Evolution Reaction Electrocatalyst. <i>ChemElectroChem</i> , 2018 , 5, 2681-2685	4.3	11
73	Synthesis of Polylysine/Silica Hybrids through Branched-Polylysine-Mediated Biosilicification. <i>ACS Omega</i> , 2018 , 3, 17573-17580	3.9	6
72	From Hollow to Solid Carbon Spheres: Time-Dependent Facile Synthesis. <i>Nanomaterials</i> , 2018 , 8,	5.4	11
71	A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy. <i>Composites Science and Technology</i> , 2018 , 164, 82-91	8.6	22
70	Mechanism of MxOy nanoparticles/CNTs for catalytic carbonization of polyethylene and application to flame retardancy. <i>Journal of Applied Polymer Science</i> , 2017 , 134, 45233	2.9	10
69	Porous nanopeapod Pd catalyst with excellent stability and efficiency. <i>Chemical Communications</i> , 2017 , 53, 740-742	5.8	8
68	Facile synthesis of porous iron oxide/graphene hybrid nanocomposites and potential application in electrochemical energy storage. <i>New Journal of Chemistry</i> , 2017 , 41, 13553-13559	3.6	20
67	Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors. <i>Journal of Alloys and Compounds</i> , 2017 , 726, 466-473	5.7	20
66	Graphene-based materials for capacitive deionization. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13907-	1 <u>3</u> 943	189
65	Effect of particle size on the flame retardancy of poly(butylene succinate)/Mg(OH)2 composites. <i>Fire and Materials</i> , 2016 , 40, 1090-1096	1.8	15
64	Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. <i>Chemical Physics Letters</i> , 2016 , 647, 14-19	2.5	29
63	A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue. <i>Journal of Colloid and Interface Science</i> , 2015 , 445, 195-204	9.3	60
62	Beaded structured CNTs-Fe3O4@C with low Fe3O4 content as anode materials with extra enhanced performances in lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 28864-28869	3.7	22

61	Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: a combination of a physical network and chemical crosslinking. <i>RSC Advances</i> , 2015 , 5, 5484-5493	3.7	11
60	Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 341-351	13	117
59	New insights into the role of lattice oxygen in the catalytic carbonization of polypropylene into high value-added carbon nanomaterials. <i>New Journal of Chemistry</i> , 2015 , 39, 962-971	3.6	6
58	Controllable Synthesis of 3D Hollow-Carbon-Spheres/Graphene-Flake Hybrid Nanostructures from Polymer Nanocomposite by Self-Assembly and Feasibility for Lithium-Ion Batteries. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 874-879	3.1	15
57	Poly(vinyl alcohol)/GO-MMT nanocomposites: Preparation, structure and properties. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2015 , 33, 329-338	3.5	16
56	Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly(lactic acid). <i>Polymer Degradation and Stability</i> , 2014 , 104, 18-27	4.7	29
55	Creation of mesopores in carbon nanotubes with improved capacities for lithium ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 25071-5	3.6	3
54	Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. <i>RSC Advances</i> , 2014 , 4, 33776-33784	3.7	20
53	Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2837-2844	8.3	73
52	One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7461-7470) ¹³	33
51	Upcycle waste plastics to magnetic carbon materials for dye adsorption from polluted water. <i>RSC Advances</i> , 2014 , 4, 26817	3.7	10
50	Striking influence of NiO catalyst diameter on the carbonization of polypropylene into carbon nanomaterials and their high performance in the adsorption of oils. <i>RSC Advances</i> , 2014 , 4, 33806-33814	4 ^{3.7}	22
49	Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. <i>Energy</i> , 2014 , 75, 549-554	7.9	54
48	Superstable magnetic nanoreactors with high efficiency for Suzuki-coupling reactions. <i>Nanoscale</i> , 2014 , 6, 12884-9	7.7	14
47	Upcycling Waste Polypropylene into Graphene Flakes on Organically Modified Montmorillonite. <i>Industrial & Description of the Chemistry Research</i> , 2014 , 53, 4173-4181	3.9	57
46	Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. <i>Biomedical Microdevices</i> , 2014 , 16, 449-58	3.7	12
45	Nanosized carbon black combined with Ni2O3 as "universal" catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. <i>Environmental Science & Camp; Technology</i> , 2014 , 48, 4048-55	10.3	60
44	Catalytic carbonization of polypropylene into cup-stacked carbon nanotubes with high performances in adsorption of heavy metallic ions and organic dyes. <i>Chemical Engineering Journal</i> , 2014, 248, 27-40	14.7	56

(2013-2014)

43	Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 592-601	21.8	47
42	Converting mixed plastics into mesoporous hollow carbon spheres with controllable diameter. <i>Applied Catalysis B: Environmental</i> , 2014 , 152-153, 289-299	21.8	44
41	Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. <i>Nanoscale Research Letters</i> , 2014 , 9, 656	5	61
40	Combination of fumed silica with carbon black for simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene. <i>Polymer</i> , 2014 , 55, 2998-3007	3.9	33
39	Synergistic effect of activated carbon and Ni2O3 in promoting the thermal stability and flame retardancy of polypropylene. <i>Polymer Degradation and Stability</i> , 2014 , 99, 18-26	4.7	27
38	Core/shell structured silica spheres with controllable thickness of mesoporous shell and its adsorption, drug storage and release properties. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 428, 79-85	5.1	18
37	Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2627-33	4.5	17
36	Catalytic conversion of linear low density polyethylene into carbon nanomaterials under the combined catalysis of Ni2O3 and poly(vinyl chloride). <i>Chemical Engineering Journal</i> , 2013 , 215-216, 339-	·3 ¹ 47 ⁷	53
35	In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 16179-16184	6.7	31
34	Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes. <i>Chemical Engineering Journal</i> , 2013 , 225, 798-808	14.7	56
33	Nanoconfinement induced formation of core/shell structured mesoporous carbon spheres coated with solid carbon shell. <i>ACS Applied Materials & District Materials</i> (2013), 5, 3042-7	9.5	14
32	Application of hollow mesoporous carbon nanospheres as an high effective adsorbent for the fast removal of acid dyes from aqueous solutions. <i>Chemical Engineering Journal</i> , 2013 , 228, 824-833	14.7	70
31	Synthesis, characterization and growth mechanism of mesoporous hollow carbon nanospheres by catalytic carbonization of polystyrene. <i>Microporous and Mesoporous Materials</i> , 2013 , 176, 31-40	5.3	41
30	Facile synthesis of hollow silica spheres with nanoholes. <i>Dalton Transactions</i> , 2013 , 42, 6381-5	4.3	5
29	Striking influence of Fe2O3 on the Batalytic carbonization of chlorinated poly(vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5247	13	59
28	Striking Influence about HZSM-5 Content and Nickel Catalyst on Catalytic Carbonization of Polypropylene and Polyethylene into Carbon Nanomaterials. <i>Industrial & Discrete Manager Chemistry Research</i> , 2013 , 52, 15578-15588	3.9	10
27	Catalytic Carbonization of Chlorinated Poly(vinyl chloride) Microfibers into Carbon Microfibers with High Performance in the Photodegradation of Congo Red. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17016-17023	3.8	21
26	Molecular simulations study of ligand-release mechanism in an odorant-binding protein from the southern house mosquito. <i>Journal of Biomolecular Structure and Dynamics</i> , 2013 , 31, 485-94	3.6	2

25	Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. <i>Polymers for Advanced Technologies</i> , 2013 , 24, 971-	9 77	31
24	Synthesis and photocatalytic performance of TiO2 nanospheres@raphene nanocomposite under visible and UV light irradiation. <i>Journal of Materials Science</i> , 2012 , 47, 3185-3190	4.3	50
23	Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism. <i>Applied Catalysis A: General</i> , 2012 , 449, 112-120	5.1	86
22	New easy way preparation of core/shell structured SnO2@carbon spheres and application for lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 216, 475-481	8.9	35
21	Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors. <i>Nanoscale Research Letters</i> , 2012 , 7, 269	5	27
20	Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. <i>ACS Applied Materials & Discreta (Materials & Discreta (Ma</i>	9.5	55
19	Effect of Cl/Ni molar ratio on the catalytic conversion of polypropylene into Cubi/C composites and their application in catalyzing ElickFeaction. <i>Applied Catalysis B: Environmental</i> , 2012 , 117-118, 185-193	21.8	61
18	CVD generated mesoporous hollow carbon spheres as supercapacitors. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 396, 246-250	5.1	58
17	Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 89, 79-85	6	298
16	MOLECULAR SIMULATIONS OF NEOCARZINOSTATIN CHROMOPHORE RELEASE MECHANISM. Journal of Theoretical and Computational Chemistry, 2012 , 11, 1357-1368	1.8	4
15	Synthesis, Growth Mechanism, and Electrochemical Properties of Hollow Mesoporous Carbon Spheres with Controlled Diameter. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17717-17724	3.8	109
14	Novel method controlled synthesis of silica coated carbon nanotubes. <i>Physica Status Solidi (A)</i> Applications and Materials Science, 2011 , 208, 462-465	1.6	1
13	Carbon-nanotube-based stimuli-responsive controlled-release system. <i>Chemistry - A European Journal</i> , 2011 , 17, 4454-9	4.8	25
12	Fabrication method of parallel mesoporous carbon nanotubes. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2011 , 377, 150-155	5.1	8
11	Preparation, structure and catalytic activity of Pt-Pd bimetallic nanoparticles on multi-walled carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 3138-44	1.3	5
10	Enhancement of the structure stability of MOF-5 confined to multiwalled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2664-2668	1.3	26
9	Multi-wall carbon nanotubes havehicle for targeted Irinotecan drug delivery. <i>Physica Status Solidi</i> (B): Basic Research, 2010 , 247, 2673-2677	1.3	17
8	Synthesis of carbon nanotubes and nanospheres with controlled morphology using different catalyst precursors. <i>Nanotechnology</i> , 2008 , 19, 325607	3.4	25

LIST OF PUBLICATIONS

7	Facile Deposition of Pd Nanoparticles on Carbon Nanotube Microparticles and Their Catalytic Activity for Suzuki Coupling Reactions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8172-8176	3.8	110
6	Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21684-9	3.4	34
5	Catalyzing Carbonization of Polypropylene Itself by Supported Nickel Catalyst during Combustion of Polypropylene/Clay Nanocomposite for Improving Fire Retardancy. <i>Chemistry of Materials</i> , 2005 , 17, 2799-2802	9.6	93
4	Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1517-20	16.4	175
3	Synthesis of Multiwalled Carbon Nanotubes by Catalytic Combustion of Polypropylene. <i>Angewandte Chemie</i> , 2005 , 117, 1541-1544	3.6	27
2	Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. <i>Polymer International</i> , 2005 , 54, 904-908	3.3	79
1	Effect of oleic acid on improving flame retardancy of brucite in low-density polyethylene composite. <i>Journal of Applied Polymer Science</i> ,51862	2.9	2