Rick D Stuart-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6641861/publications.pdf

Version: 2024-02-01

101 papers 7,567 citations

39 h-index 83 g-index

107 all docs

107 docs citations

107 times ranked

9364 citing authors

#	Article	IF	CITATIONS
1	Persistent thermally driven shift in the functional trait structure of herbivorous fishes: Evidence of topâ€down control on the rebound potential of temperate seaweed forests?. Global Change Biology, 2022, 28, 2296-2311.	4.2	14
2	A quantitative review of abundanceâ€based species distribution models. Ecography, 2022, 2022, .	2.1	37
3	A community and functional comparison of coral and reef fish assemblages between four decades of coastal urbanisation and thermal stress. Ecology and Evolution, 2022, 12, e8736.	0.8	6
4	Tropicalization of temperate reef fish communities facilitated by urchin grazing and diversity of thermal affinities. Global Ecology and Biogeography, 2022, 31, 995-1005.	2.7	4
5	Community size structure varies with predator–prey size relationships and temperature across Australian reefs. Ecology and Evolution, 2022, 12, e8789.	0.8	6
6	Prioritising conservation actions for extremely data-poor species: A risk assessment for one of the world's rarest marine fishes. Biological Conservation, 2022, 268, 109501.	1.9	2
7	Biological trade-offs underpin coral reef ecosystem functioning. Nature Ecology and Evolution, 2022, 6, 701-708.	3.4	18
8	Sea temperature and habitat effects on juvenile reef fishes along a tropicalizing coastline. Diversity and Distributions, 2022, 28, 1154-1170.	1.9	3
9	Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220162.	1.2	14
10	Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates. Nature Ecology and Evolution, 2022, 6, 684-692.	3.4	8
11	Spatial compositional turnover varies with trophic level and body size in marine assemblages of micro― and macroorganisms. Global Ecology and Biogeography, 2022, 31, 1556-1570.	2.7	2
12	The awakening of invertebrates: The daily dynamics of fishes and mobile invertebrates at Rapa Nui's multiple use marine protected area. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 290-303.	0.9	4
13	Small invertebrate consumers produce consistent size spectra across reef habitats and climatic zones. Oikos, 2021, 130, 156-170.	1.2	12
14	Direct and indirect effects of heatwaves on a coral reef fishery. Global Change Biology, 2021, 27, 1214-1225.	4.2	14
15	Globally consistent reef size spectra integrating fishes and invertebrates. Ecology Letters, 2021, 24, 572-579.	3.0	18
16	Trait similarity in reef fish faunas across the world $\hat{a} \in \mathbb{T}^M$ s oceans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	50
17	Habitat loss and range shifts contribute to ecological generalization among reef fishes. Nature Ecology and Evolution, 2021, 5, 656-662.	3.4	40
18	Fish heating tolerance scales similarly across individual physiology and populations. Communications Biology, 2021, 4, 264.	2.0	20

#	Article	IF	Citations
19	Maximizing regional biodiversity requires a mosaic of protection levels. PLoS Biology, 2021, 19, e3001195.	2.6	11
20	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 2021, 263, 109175.	1.9	96
21	High biomass and productivity of epifaunal invertebrates living amongst dead coral. Marine Biology, 2021, 168, 1.	0.7	14
22	Reef communities show predictable undulations in linear abundance size spectra from copepods to sharks. Ecology Letters, 2021, 24, 2146-2154.	3.0	5
23	Establishing the Foundation for the Global Observing System for Marine Life. Frontiers in Marine Science, 2021, 8, .	1.2	11
24	Climate change: Large-scale abundance shifts in fishes. Current Biology, 2021, 31, R1445-R1447.	1.8	8
25	Endemic Handfish Species Threatened With Extinction. , 2021, , .		0
26	Species richness and identity both determine the biomass of global reef fish communities. Nature Communications, 2021, 12, 6875.	5.8	12
27	National-scale marine bioregions for the Southwest Pacific. Marine Pollution Bulletin, 2020, 150, 110710.	2.3	10
28	Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201798.	1,2	16
29	Conservation challenges for the most threatened family of marine bony fishes (handfishes:) Tj ETQq1 1 0.784314	4 rgBT/Ov	erlock 10 Tf
30	Establishing the ecological basis for conservation of shallow marine life using Reef Life Survey. Biological Conservation, 2020, 252, 108855.	1.9	52
31	Fish body sizes change with temperature but not all species shrink with warming. Nature Ecology and Evolution, 2020, 4, 809-814.	3.4	103
32	Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science, 2020, 368, 307-311.	6.0	99
33	Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biology, 2020, 18, e3000702.	2.6	38
34	Taxonomic composition of mobile epifaunal invertebrate assemblages on diverse benthic microhabitats from temperate to tropical reefs. Marine Ecology - Progress Series, 2020, 640, 31-43.	0.9	20
35	Disentangling the response of fishes to recreational fishing over 30†years within a fringing coral reef reserve network. Biological Conservation, 2019, 237, 514-524.	1.9	20
36	Weaknesses in stock assessment modelling and management practices affect fisheries sustainability. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 2010-2016.	0.9	10

#	Article	IF	CITATIONS
37	Climate resilience in marine protected areas and the â€~Protection Paradox'. Biological Conservation, 2019, 236, 305-314.	1.9	131
38	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	1.2	123
39	The shape of abundance distributions across temperature gradients in reef fishes. Ecology Letters, 2019, 22, 685-696.	3.0	53
40	Ocean community warming responses explained by thermal affinities and temperature gradients. Nature Climate Change, 2019, 9, 959-963.	8.1	134
41	Body size, reef area and temperature predict global reefâ€fish species richness across spatial scales. Global Ecology and Biogeography, 2019, 28, 315-327.	2.7	37
42	A global assessment of the direct and indirect benefits of marine protected areas for coral reef conservation. Diversity and Distributions, 2019, 25, 9-20.	1.9	59
43	Global baselines and benchmarks for fish biomass: comparing remote reefs and fisheries closures. Marine Ecology - Progress Series, 2019, 612, 167-192.	0.9	52
44	Effects of urbanisation on macroalgae and sessile invertebrates in southeast Australian estuaries. Estuarine, Coastal and Shelf Science, 2018, 205, 30-39.	0.9	15
45	Species' thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. Diversity and Distributions, 2018, 24, 1036-1046.	1.9	55
46	Pollution signature for temperate reef biodiversity is short and simple. Marine Pollution Bulletin, 2018, 130, 159-169.	2.3	22
47	Fishingâ€gear restrictions and biomass gains for coral reef fishes in marine protected areas. Conservation Biology, 2018, 32, 401-410.	2.4	43
48	Reef fish carbonate production assessments highlight regional variation in sedimentary significance. Geology, 2018, 46, 699-702.	2.0	17
49	Effects of Pollution From Anthropogenic Point Sources on the Recruitment of Sessile Estuarine Reef Biota. Frontiers in Marine Science, 2018, 5, .	1.2	9
50	A new wave of marine evidence-based management: emerging challenges and solutions to transform monitoring, evaluating, and reporting. ICES Journal of Marine Science, 2018, 75, 941-952.	1.2	48
51	An experimental assessment of impacts of pollution sources on sessile biota in a temperate urbanised estuary. Marine Pollution Bulletin, 2018, 133, 209-217.	2.3	6
52	Interactive responses of primary producers and grazers to pollution on temperate rocky reefs. Environmental Pollution, 2018, 237, 388-395.	3.7	8
53	Rapid declines across Australian fishery stocks indicate global sustainability targets will not be achieved without an expanded network of †no†fishing†to reserves. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1337-1350.	0.9	39
54	Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature, 2018, 560, 92-96.	13.7	204

#	Article	IF	CITATIONS
55	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
56	Gravity of human impacts mediates coral reef conservation gains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6116-E6125.	3.3	185
57	Moving beyond trophic groups: evaluating fishingâ€ʻinduced changes to temperate reef food webs. Marine Ecology - Progress Series, 2018, 587, 175-186.	0.9	4
58	The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama. PeerJ, 2018, 6, e4455.	0.9	26
59	Biological interactions both facilitate and resist climate-related functional change in temperate reef communities. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170484.	1.2	38
60	Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity. Science Advances, 2017, 3, e1700419.	4.7	61
61	Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecology and Evolution, 2017, 1, 1846-1852.	3.4	120
62	Translating local benthic community structure to national biogenic reef habitat types. Global Ecology and Biogeography, 2017, 26, 1112-1125.	2.7	21
63	New opportunities for conservation of handfishes (Family Brachionichthyidae) and other inconspicuous and threatened marine species through citizen science. Biological Conservation, 2017, 208, 174-182.	1.9	23
64	Assessing National Biodiversity Trends for Rocky and Coral Reefs through the Integration of Citizen Science and Scientific Monitoring Programs. BioScience, 2017, 67, 134-146.	2.2	64
65	Consistent multi-level trophic effects of marine reserve protection across northern New Zealand. PLoS ONE, 2017, 12, e0177216.	1.1	28
66	Biodiversity enhances reef fish biomass and resistance to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6230-6235.	3.3	178
67	Predicting the diet of coastal fishes at a continental scale based on taxonomy and body size. Journal of Experimental Marine Biology and Ecology, 2016, 480, 1-7.	0.7	10
68	Bright spots among the world's coral reefs. Nature, 2016, 535, 416-419.	13.7	394
69	New Approaches to Marine Conservation Through the Scaling Up of Ecological Data. Annual Review of Marine Science, 2016, 8, 435-461.	5.1	65
70	Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges. Nature Communications, 2016, 7, 10491.	5.8	43
71	Contributions of body size, habitat and taxonomy to predictions of temperate Australian fish diets. Marine Ecology - Progress Series, 2016, 545, 239-249.	0.9	6
72	Species traits and climate velocity explain geographic range shifts in an oceanâ€warming hotspot. Ecology Letters, 2015, 18, 944-953.	3.0	334

#	Article	IF	CITATIONS
73	Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas. PLoS ONE, 2015, 10, e0140270.	1.1	46
74	A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme. PLoS ONE, 2015, 10, e0141039.	1.1	163
75	Loss of native rocky reef biodiversity in Australian metropolitan embayments. Marine Pollution Bulletin, 2015, 95, 324-332.	2.3	27
76	Thermal biases and vulnerability to warming in the world's marine fauna. Nature, 2015, 528, 88-92.	13.7	159
77	Functional traits reveal early responses in marine reserves following protection from fishing. Diversity and Distributions, 2015, 21, 876-887.	1.9	61
78	Broad-scale impacts of salmon farms on temperate macroalgal assemblages on rocky reefs. Marine Pollution Bulletin, 2015, 98, 201-209.	2.3	26
79	Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Diversity and Distributions, 2015, 21, 13-22.	1.9	52
80	The potential of trait-based approaches to contribute to marine conservation. Marine Policy, 2015, 51, 148-150.	1.5	5
81	Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, 2014, 173, 144-154.	1.9	374
82	Global conservation outcomes depend on marine protected areas with five key features. Nature, 2014, 506, 216-220.	13.7	1,367
83	Out of sight, out of mind: Threats to the marine biodiversity of the Canary Islands (NE Atlantic Ocean). Marine Pollution Bulletin, 2014, 86, 9-18.	2.3	25
84	Resilience and signatures of tropicalization in protected reef fish communities. Nature Climate Change, 2014, 4, 62-67.	8.1	123
85	Systematic global assessment of reef fish communities by the Reef Life Survey program. Scientific Data, 2014, 1, 140007.	2.4	169
86	Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 2013, 501, 539-542.	13.7	445
87	Research challenges to improve the management and conservation of subtropical reefs to tackle climate change threats. Ecological Management and Restoration, 2011, 12, e7-e10.	0.7	22
88	Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes. PLoS Biology, 2011, 9, e1000606.	2.6	249
89	Quantifying wave exposure in shallow temperate reef systems: applicability of fetch models for predicting algal biodiversity. Marine Ecology - Progress Series, 2010, 417, 83-95.	0.9	59
90	Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Global Change Biology, 2010, 16, 122-134.	4.2	61

#	Article	IF	CITATIONS
91	Exploited reefs protected from fishing transform over decades into conservation features otherwise absent from seascapes. Ecological Applications, 2009, 19, 1967-1974.	1.8	86
92	Ecological effects of marine protected areas on rocky reef communities—a continental-scale analysis. Marine Ecology - Progress Series, 2009, 388, 51-62.	0.9	125
93	A shift in the habitat use pattern of a lentic galaxiid fish: an acute behavioural response to an introduced predator. Environmental Biology of Fishes, 2008, 82, 93-100.	0.4	33
94	Size dimorphism in Rankinia [Tympanocryptis] diemensis (Family Agamidae): sex-specific patterns and geographic variation. Biological Journal of the Linnean Society, 2008, 94, 699-709.	0.7	6
95	Spatial patterns in impacts of fishing on temperate rocky reefs: Are fish abundance and mean size related to proximity to fisher access points?. Journal of Experimental Marine Biology and Ecology, 2008, 365, 116-125.	0.7	29
96	The effects of turbidity and complex habitats on the feeding of a galaxiid fish are clear and simple. Marine and Freshwater Research, 2007, 58, 429.	0.7	15
97	The impact of an introduced predator on a threatened galaxiid fish is reduced by the availability of complex habitats. Freshwater Biology, 2007, 52, 1555-1563.	1.2	19
98	Is fecundity the ultimate cause of female-biased size dimorphism in a dragon lizard?. Journal of Zoology, 2007, 273, 266-272.	0.8	15
99	Nocturnal and diurnal feeding by Galaxias auratus, a lentic galaxiid fish. Ecology of Freshwater Fish, 2006, 15, 521-531.	0.7	10
100	Increasing turbidity significantly alters the diet of brown trout: a multi-year longitudinal study. Journal of Fish Biology, 2004, 65, 376-388.	0.7	39
101	Circumglobal distribution of fish environmental DNA in coral reefs. ARPHA Conference Abstracts, 0, 4, .	0.0	O