Minghua Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6641679/publications.pdf

Version: 2024-02-01

109321 123424 3,831 75 35 61 citations h-index g-index papers 81 81 81 4080 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Potassium as a Versatile Promoter to Tailor the Distribution of the Olefins in CO ₂ Hydrogenation over Ironâ€Based Catalyst. ChemCatChem, 2022, 14, .	3.7	10
2	Effect of Titania Polymorphs on the Structure and Catalytic Performance of the Pt–WO _{<i>x</i>} /TiO ₂ Catalyst in Glycerol Hydrogenolysis to 1,3-Propanediol. ACS Sustainable Chemistry and Engineering, 2022, 10, 9532-9545.	6.7	11
3	Cyclohexene esterification–hydrogenation for efficient production of cyclohexanol. Green Chemistry, 2021, 23, 1185-1192.	9.0	22
4	Tungsten-doped siliceous mesocellular foams-supported platinum catalyst for glycerol hydrogenolysis to 1,3-propanediol. Applied Catalysis B: Environmental, 2021, 297, 120428.	20.2	27
5	KOH-Assisted Band Engineering of Polymeric Carbon Nitride for Visible Light Photocatalytic Oxygen Reduction to Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 594-603.	6.7	57
6	Iron–Potassium on Single-Walled Carbon Nanotubes as Efficient Catalyst for CO ₂ Hydrogenation to Heavy Olefins. ACS Catalysis, 2020, 10, 6389-6401.	11.2	90
7	MOFs Conferred with Transient Metal Centers for Enhanced Photocatalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 17182-17186.	13.8	121
8	One-pot synthesis of potassium and phosphorus-doped carbon nitride catalyst derived from urea for highly efficient visible light-driven hydrogen peroxide production. Catalysis Today, 2019, 330, 171-178.	4.4	42
9	FeK on 3D Graphene–Zeolite Tandem Catalyst with High Efficiency and Versatility in Direct CO ₂ Conversion to Aromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 17825-17833.	6.7	53
10	Potassium-promoted magnesium ferrite on 3D porous graphene as highly efficient catalyst for CO hydrogenation to lower olefins. Journal of Catalysis, 2019, 374, 24-35.	6.2	20
11	Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Frontiers of Chemical Science and Engineering, 2018, 12, 124-131.	4.4	67
12	Undercoordinated Site-Abundant and Tensile-Strained Nickel for Low-Temperature CO _{<i>x</i>} Methanation. ACS Catalysis, 2018, 8, 1207-1211.	11.2	34
13	Ru–Zn/ZrO ₂ Nanocomposite Catalysts Fabricated by Galvanic Replacement for Benzene Partial Hydrogenation. ChemCatChem, 2018, 10, 1184-1191.	3.7	20
14	Porous Graphene-Confined Fe–K as Highly Efficient Catalyst for CO ₂ Direct Hydrogenation to Light Olefins. ACS Applied Materials & Divergence (2018, 10, 23439-23443).	8.0	100
15	Ceriaâ€Zirconia/Zeolite Bifunctional Catalyst for Highly Selective Conversion of Syngas into Aromatics. ChemCatChem, 2018, 10, 4519-4524.	3.7	68
16	Pt–WO on monoclinic or tetrahedral ZrO2: Crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol. Applied Catalysis B: Environmental, 2017, 217, 331-341.	20.2	101
17	Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol. Green Chemistry, 2017, 19, 2174-2183.	9.0	80
18	Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity. Applied Catalysis B: Environmental, 2017, 204, 475-485.	20.2	104

#	Article	lF	CITATIONS
19	Design of Bifunctional Solid Catalysts for Conversion of Biomass-Derived Syngas into Biofuels. Biofuels and Biorefineries, 2017, , 137-158.	0.5	2
20	Reversible Selectivity Modulation of Gasoline and Diesel by a Facile Metal-Salt-Modified Fischer-Tropsch Synthesis Strategy. ChemCatChem, 2016, 8, 3691-3691.	3.7	0
21	Nanocrystalline iron–boron catalysts for low-temperature CO hydrogenation: Selective liquid fuel production and structure–activity correlation. Journal of Catalysis, 2016, 339, 102-110.	6.2	20
22	Reversible Selectivity Modulation of Gasoline and Diesel by a Facile Metalâ€Saltâ€Modified Fischer–Tropsch Synthesis Strategy. ChemCatChem, 2016, 8, 3701-3705.	3.7	4
23	Fischer–Tropsch Synthesis to Lower Olefins over Potassium-Promoted Reduced Graphene Oxide Supported Iron Catalysts. ACS Catalysis, 2016, 6, 389-399.	11.2	195
24	Ru–B nanoparticles on metal–organic frameworks as excellent catalysts for hydrogenation of benzene to cyclohexane under mild reaction conditions. Green Chemistry, 2016, 18, 2216-2221.	9.0	19
25	Selective diesel production from syngas over non-noble metal catalyst via a novel hydrogenolysis mechanism. Science China Chemistry, 2015, 58, 971-972.	8.2	0
26	Graphene-supported metal/metal oxide nanohybrids: synthesis and applications in heterogeneous catalysis. Catalysis Science and Technology, 2015, 5, 3903-3916.	4.1	125
27	Ru nanoparticles on rutile/anatase junction of P25 TiO 2 : Controlled deposition and synergy in partial hydrogenation of benzene to cyclohexene. Journal of Catalysis, 2015, 332, 119-126.	6.2	68
28	ε-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nature Communications, 2014, 5, 5783.	12.8	214
29	Doping effects of B in ZrO2 on structural and catalytic properties of Ru/B-ZrO2 catalysts for benzene partial hydrogenation. Journal of Catalysis, 2014, 311, 393-403.	6.2	62
30	Robust Au/Ce _{0.4} Zr _{0.6} O ₂ Catalyst for Dynamic Shutdown/Startup of the Water–Gas Shift Reaction in Realistic Reformate with <1 % O ₂ . ChemCatChem, 2014, 6, 3318-3322.	3.7	3
31	Physically mixed ZnO and skeletal NiMo for one-pot reforming-hydrogenolysis of glycerol to 1,2-propanediol. Chinese Journal of Catalysis, 2013, 34, 1020-1026.	14.0	37
32	Shape Effect of ZnO Crystals as Cocatalyst in Combined Reforming–Hydrogenolysis of Glycerol. ACS Catalysis, 2013, 3, 2280-2287.	11.2	65
33	Research, development, and application of amorphous nickel alloy catalysts prepared by melt-quenching. Chinese Journal of Catalysis, 2013, 34, 828-837.	14.0	8
34	A comparative study of the deactivation mechanisms of the Au/CeO2 catalyst for water–gas shift under steady-state and shutdown/start-up conditions in realistic reformate. Journal of Catalysis, 2013, 300, 152-162.	6.2	32
35	Oneâ€Pot Approach to a Highly Robust Iron Oxide/Reduced Graphene Oxide Nanocatalyst for Fischer–Tropsch Synthesis. ChemCatChem, 2013, 5, 714-719.	3.7	32
36	Structural and Catalytic Properties of Alkaline Postâ€Treated Ru/ZrO ₂ Catalysts for Partial Hydrogenation of Benzene to Cyclohexene. ChemCatChem, 2013, 5, 2425-2435.	3.7	27

#	Article	IF	Citations
37	Fischer–Tropsch Synthesis Over Skeletal FeCe Catalysts Leached from Rapidly Quenched Ternary FeCeAl Alloys. ChemCatChem, 2013, 5, 3857-3865.	3.7	11
38	Reforming and Hydrogenolysis of Glycerol over Ni/ZnO Catalysts Prepared by Different Methods. Chinese Journal of Catalysis, 2012, 33, 1266-1275.	14.0	36
39	Effect of Support Acidity on Liquid-Phase Hydrogenation of Benzene to Cyclohexene over Ru–B/ZrO2Catalysts. Industrial & Engineering Chemistry Research, 2012, , 120911135834009.	3.7	3
40	Preparation and Catalysis of Carbonâ€Supported Iron Catalysts for Fischer–Tropsch Synthesis. ChemCatChem, 2012, 4, 1498-1511.	3.7	100
41	A highly selective Raney Fe@HZSM-5 Fischer–Tropsch synthesis catalyst for gasoline production: one-pot synthesis and unexpected effect of zeolites. Catalysis Science and Technology, 2012, 2, 1625.	4.1	76
42	Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys. Chemical Society Reviews, 2012, 41, 8140.	38.1	190
43	Effect of Cu loading on Cu/ZnO water–gas shift catalysts for shut-down/start-up operation. International Journal of Hydrogen Energy, 2012, 37, 6381-6388.	7.1	25
44	Heteroepitaxial growth of gold on flowerlike magnetite: An efficacious and magnetically recyclable catalyst for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol. Journal of Catalysis, 2011, 281, 106-118.	6.2	62
45	Fischer–Tropsch Synthesis over Molecular Sieve Supported Catalysts. ChemCatChem, 2011, 3, 542-550.	3.7	7 5
46	Aqueous-phase reforming of ethylene glycol on Co/ZnO catalysts prepared by the coprecipitation method. Journal of Molecular Catalysis A, 2011, 335, 129-135.	4.8	40
47	Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: Metal–support interaction and excellent intrinsic activity. Journal of Catalysis, 2010, 274, 287-295.	6.2	95
48	Simultaneous Aqueousâ€Phase Reforming and KOH Carbonation to Produce CO _{<i>x</i>} â€Free Hydrogen in a Single Reactor. ChemSusChem, 2010, 3, 803-806.	6.8	30
49	Preparation and characterization of the chirally modified rapidly quenched skeletal Ni catalyst for enantioselective hydrogenation of butanone to R-(â°)-2-butanol. Journal of Molecular Catalysis A, 2010, 326, 113-120.	4.8	10
50	Fe _{<i>x</i>} O _{<i>y</i>} @C Spheres as an Excellent Catalyst for Fischerâ^'Tropsch Synthesis. Journal of the American Chemical Society, 2010, 132, 935-937.	13.7	263
51	Integration of methanation into the hydrogenation process of benzoic acid. AICHE Journal, 2009, 55, 192-197.	3.6	18
52	Reactivation of spent Pd/AC catalyst by supercritical CO ₂ fluid extraction. AICHE Journal, 2009, 55, 2382-2388.	3.6	18
53	Cu/ZnO/Al2O3 water–gas shift catalysts for practical fuel cell applications: the performance in shut-down/start-up operation. International Journal of Hydrogen Energy, 2009, 34, 2361-2368.	7.1	37
54	Functional nanohybrids self-assembled from amphiphilic calix[6]biscrowns and noble metals. Journal of Materials Chemistry, 2009, 19, 7610.	6.7	8

#	Article	lF	CITATIONS
55	A theoretical study on the metal cation-Ï€ complexes of Zn2+ and Cd2+ with benzene and cyclohexene. Molecular Physics, 2009, 107, 1271-1282.	1.7	18
56	A Novel Rutheniumâ€Phosphorus Amorphous Alloy Catalyst for Maltose Hydrogenation to Maltitol. Advanced Synthesis and Catalysis, 2008, 350, 829-836.	4.3	26
57	Adsorption and Thermal Reaction of Dipropyl Sulfide on Skeletal Ni Adsorbents. Journal of Physical Chemistry C, 2007, 111, 17535-17540.	3.1	6
58	A novel sol–gel synthetic route to alumina nanofibers via aluminum nitrate and hexamethylenetetramine. Materials Letters, 2007, 61, 5074-5077.	2.6	30
59	Skeletal Ni catalysts prepared from Ni–Al alloys rapidly quenched at different rates: Texture, structure and catalytic performance in chemoselective hydrogenation of 2-ethylanthraquinone. Journal of Catalysis, 2006, 237, 143-151.	6.2	36
60	Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol. Journal of Catalysis, 2006, 241, 211-220.	6.2	62
61	Liquid-phase chemoselective hydrogenation of 2-ethylanthraquinone over chromium-modified nanosized amorphous Ni–B catalysts. Journal of Catalysis, 2005, 229, 97-104.	6.2	80
62	A non-noble amorphous Co–Fe–B catalyst highly selective in liquid phase hydrogenation of crotonaldehyde to crotyl alcohol. New Journal of Chemistry, 2005, 29, 992.	2.8	11
63	Amorphous Ni-B hollow spheres synthesized by controlled organization of Ni-B nanoparticles over PS beads via surface seeding/electroless plating. New Journal of Chemistry, 2005, 29, 266.	2.8	30
64	Structural and catalytic properties of skeletal Ni catalyst prepared from the rapidly quenched Ni50Al50 alloy. Journal of Catalysis, 2004, 221, 612-618.	6.2	65
65	Mesoporous silica-supported NiB amorphous alloy catalysts for selective hydrogenation of 2-ethylanthraquinone. Journal of Catalysis, 2004, 227, 419-427.	6.2	63
66	Partial hydrogenation of benzene to cyclohexene on a Ru–Zn/m-ZrO2 nanocomposite catalyst. Applied Catalysis A: General, 2004, 272, 29-36.	4.3	92
67	Liquid phase hydrogenation of crotonaldehyde over Sn-promoted amorphous Co–B catalysts. Journal of Molecular Catalysis A, 2004, 211, 243-249.	4.8	18
68	Colloidal RuB/Al2O3·xH2O catalyst for liquid phase hydrogenation of benzene to cyclohexene. Journal of Molecular Catalysis A, 2004, 222, 229-234.	4.8	40
69	Selective hydrogenation of 2-ethylanthraquinone over an environmentally benign Ni_B/SBA-15 catalyst prepared by a novel reductant–impregnation method. Journal of Catalysis, 2003, 220, 254-257.	6.2	29
70	Amorphous Ni-B/SiO2 catalyst prepared by microwave heating and its catalytic activityin acrylonitrile hydrogenation. Journal of Chemical Technology and Biotechnology, 2003, 78, 512-517.	3.2	12
71	Highly selective amorphous Ni–Cr–B catalyst in 2-ethylanthraquinone hydrogenation to 2-ethylanthrahydroquinone. Chemical Communications, 2002, , 1236-1237.	4.1	27
72	Preparation of amorphous Ni–B alloy: the effect of feeding order, precursor salt, pH and adding rate. Materials Letters, 2002, 56, 952-957.	2.6	29

Minghua Qiao

#	Article	IF	CITATIONS
73	Skeletal Ni Catalyst Prepared from a Rapidly Quenched Ni–Al Alloy and Its High Selectivity in 2-Ethylanthraquinone Hydrogenation. Journal of Catalysis, 2001, 204, 512-515.	6.2	35
74	A novel Ru–B/SiO2 amorphous catalyst used in benzene-selective hydrogenation. Applied Catalysis A: General, 1999, 176, 129-134.	4.3	76
75	Advances in methanation catalysis. Catalysis, 0, , 1-28.	1.0	9