Erik S Musiek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6641407/publications.pdf

Version: 2024-02-01

109137 106150 6,027 76 35 65 h-index citations g-index papers 79 79 79 8581 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Astrocytes deficient in circadian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology without changing plaque burden. Scientific Reports, 2022, 12, 1796.	1.6	22
2	Validation of blood-based transcriptomic circadian phenotyping in older adults. Sleep, 2022, 45, .	0.6	1
3	Targeting Sleep and Circadian Function in the Prevention of Alzheimer Disease. JAMA Neurology, 2022, 79, 835.	4.5	12
4	Endothelial ether lipids link the vasculature to blood pressure, behavior, and neurodegeneration. Journal of Lipid Research, 2021, 62, 100079.	2.0	5
5	The Longitudinal Earlyâ€onset Alzheimer's Disease Study (LEADS): Framework and methodology. Alzheimer's and Dementia, 2021, 17, 2043-2055.	0.4	34
6	Evaluation of SAMP8 Mice as a Model for Sleep-Wake and Rhythm Disturbances Associated with Alzheimer's Disease: Impact of Treatment with the Dual Orexin (Hypocretin) Receptor Antagonist Lemborexant. Journal of Alzheimer's Disease, 2021, 81, 1151-1167.	1.2	11
7	Aducanumab for Alzheimer disease: the amyloid hypothesis moves from bench to bedside. Journal of Clinical Investigation, 2021, 131, .	3.9	21
8	Sharper in the morning: Cognitive time of day effects revealed with high-frequency smartphone testing. Journal of Clinical and Experimental Neuropsychology, 2021, 43, 825-837.	0.8	22
9	Circadian regulation of astrocyte function: implications for Alzheimer's disease. Cellular and Molecular Life Sciences, 2020, 77, 1049-1058.	2.4	32
10	Inhibition of REVâ€ERBs stimulates microglial amyloidâ€beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease. Aging Cell, 2020, 19, e13078.	3.0	81
11	Impact of circadian and diurnal rhythms on cellular metabolic function and neurodegenerative diseases. International Review of Neurobiology, 2020, 154, 393-412.	0.9	5
12	<i>Chi3l1</i> /YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer's disease pathogenesis. Science Translational Medicine, 2020, 12, .	5.8	98
13	Circadian fragmentation: a harbinger of Alzheimer's disease?. The Lancet Healthy Longevity, 2020, 1, e90-e91.	2.0	O
14	The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiology of Disease, 2020, 139, 104832.	2.1	72
15	REV-ERBÎ \pm mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. ELife, 2020, 9, .	2.8	42
16	Circadian rhythm–dependent and circadian rhythm–independent impacts of the molecular clock on type 3 innate lymphoid cells. Science Immunology, 2019, 4, .	5.6	65
17	Rev-erbs and Glia—Implications for Neurodegenerative Diseases. Journal of Experimental Neuroscience, 2019, 13, 117906951985323.	2.3	1
18	Dural lymphatics regulate clearance of extracellular tau from the CNS. Molecular Neurodegeneration, 2019, 14, 11.	4.4	134

#	Article	IF	CITATIONS
19	Pharmacological activation of the nuclear receptor REV-ERB reverses cognitive deficits and reduces amyloid-β burden in a mouse model of Alzheimer's disease. PLoS ONE, 2019, 14, e0215004.	1.1	19
20	Circadian clock protein Rev-erbl \pm regulates neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5102-5107.	3.3	164
21	Association between circadian rhythms and neurodegenerative diseases. Lancet Neurology, The, 2019, 18, 307-318.	4.9	384
22	Regulation of amyloid- \hat{l}^2 dynamics and pathology by the circadian clock. Journal of Experimental Medicine, 2018, 215, 1059-1068.	4.2	123
23	Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurology, 2018, 75, 582.	4.5	285
24	Alzheimer's Disease and Sleep–Wake Disturbances: Amyloid, Astrocytes, and Animal Models. Journal of Neuroscience, 2018, 38, 2901-2910.	1.7	56
25	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. Cell Reports, 2018, 25, 1-9.e5.	2.9	100
26	Sleep and clocks – implications for brain health. Neurobiology of Sleep and Circadian Rhythms, 2017, 2, 1-3.	1.4	0
27	Circadian Rhythms in AD Pathogenesis: a Critical Appraisal. Current Sleep Medicine Reports, 2017, 3, 85-92.	0.7	26
28	Neuropsychiatric signs and symptoms of Alzheimer's disease: NewÂtreatment paradigms. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 440-449.	1.8	240
29	Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease. JAMA Neurology, 2016, 73, 1125.	4.5	17
30	Nmnat1 protects neuronal function without altering phosphoâ€tau pathology in a mouse model of tauopathy. Annals of Clinical and Translational Neurology, 2016, 3, 434-442.	1.7	23
31	Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science, 2016, 354, 1004-1008.	6.0	542
32	Timing of expression of the core clock gene $\langle i \rangle$ Bmal1 $\langle i \rangle$ influences its effects on aging and survival. Science Translational Medicine, 2016, 8, 324ra16.	5.8	249
33	Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nature Neuroscience, 2015, 18, 800-806.	7.1	582
34	Mystery Case: A young woman with isolated upbeating nystagmus. Neurology, 2015, 84, e17-9.	1.5	3
35	Circadian clock disruption in neurodegenerative diseases: cause and effect?. Frontiers in Pharmacology, 2015, 6, 29.	1.6	99
36	Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease. Experimental and Molecular Medicine, 2015, 47, e148-e148.	3.2	375

#	Article	IF	Citations
37	Neuroinflammation: Friend or foe?. Science Translational Medicine, 2015, 7, .	5.8	1
38	Preventing an unholy alliance. Science Translational Medicine, 2015, 7, .	5.8	0
39	Stopping Seizures After Brain Injury. Science Translational Medicine, 2014, 6, .	5.8	O
40	Young Blood Rejuvenates the Aging Brain. Science Translational Medicine, 2014, 6, .	5.8	0
41	Shedding (UV) Light on Multiple Sclerosis. Science Translational Medicine, 2014, 6, .	5.8	O
42	Toxic Proteins on the Move. Science Translational Medicine, 2014, 6, .	5.8	0
43	Neuroprotective Drug Gives a Nod to NAD. Science Translational Medicine, 2014, 6, .	5.8	O
44	Tau-Chopping Enzyme Adds Fuel to the Neurodegeneration Fire. Science Translational Medicine, 2014, 6,	5.8	0
45	Protein Clearance Ain't What It Used to Be. Science Translational Medicine, 2014, 6, .	5.8	0
46	Molecular Clocks in Pharmacology. Handbook of Experimental Pharmacology, 2013, , 243-260.	0.9	41
47	Knitting Up the Raveled Sleave of Care. Science Translational Medicine, 2013, 5, 212rv3.	5.8	31
48	Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. Journal of Clinical Investigation, 2013, 123, 5389-5400.	3.9	393
49	Alzheimer disease: current concepts & future directions. Missouri Medicine, 2013, 110, 395-400.	0.3	10
50	Origins of Alzheimer's disease. Current Opinion in Neurology, 2012, 25, 715-720.	1.8	62
51	Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimer's and Dementia, 2012, 8, 51-59.	0.4	149
52	Feasibility of estimation of brain volume and 2-deoxy-2-(18)F-fluoro-D-glucose metabolism using a novel automated image analysis method: application in Alzheimer's disease. Hellenic Journal of Nuclear Medicine, 2012, 15, 190-6.	0.2	10
53	The fatty acid oxidation product 15â€A _{3t} â€Isoprostane is a potent inhibitor of NFκB transcription and macrophage transformation. Journal of Neurochemistry, 2011, 119, 604-616.	2.1	26
54	Facial tic associated with lamotrigine in adults. Movement Disorders, 2010, 25, 1512-1513.	2.2	10

#	Article	IF	CITATIONS
55	Essential Role of the Redox-Sensitive Kinase p66 (sup>shc (sup>in Determining Energetic and Oxidative Status and Cell Fate in Neuronal Preconditioning. Journal of Neuroscience, 2010, 30, 5242-5252.	1.7	35
56	p66shc's role as an essential mitophaghic molecule in controlling neuronal redox and energetic tone. Autophagy, 2010, 6, 948-949.	4.3	8
57	Neurotoxic lipid peroxidation species formed by ischemic stroke increase injury. Free Radical Biology and Medicine, 2009, 47, 1422-1431.	1.3	38
58	Electrophilic Cyclopentenone Neuroprostanes Are Anti-inflammatory Mediators Formed from the Peroxidation of the ω-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid. Journal of Biological Chemistry, 2008, 283, 19927-19935.	1.6	122
59	Investigation of Nonneoplastic Neurologic Disorders with PET and MRI. PET Clinics, 2008, 3, 317-334.	1.5	3
60	Prolonged \hat{l} ±-Tocopherol Deficiency Decreases Oxidative Stress and Unmasks \hat{l} ±-Tocopherol-dependent Regulation of Mitochondrial Function in the Brain. Journal of Biological Chemistry, 2008, 283, 6915-6924.	1.6	43
61	Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nature Protocols, 2007, 2, 221-226.	5.5	290
62	Electrophilic Cyclopentenone Isoprostanes in Neurodegeneration. Journal of Molecular Neuroscience, 2007, 33, 80-86.	1.1	18
63	Cyclopentenone isoprostanes are novel bioactive products of lipid oxidation which enhance neurodegeneration. Journal of Neurochemistry, 2006, 97, 1301-1313.	2.1	7 5
64	Quantification of Isoprostanes as an Index of Oxidative Stress: A Update. Journal of Biological Sciences, 2006, 6, 469-479.	0.1	3
65	Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids, 2005, 40, 987-994.	0.7	105
66	Cyclopentenone Isoprostanes Inhibit the Inflammatory Response in Macrophages. Journal of Biological Chemistry, 2005, 280, 35562-35570.	1.6	86
67	15-Hydroxyprostaglandin Dehydrogenase Is Down-regulated in Colorectal Cancer. Journal of Biological Chemistry, 2005, 280, 3217-3223.	1.6	242
68	The Cyclopentenone (A2/J2) Isoprostanesâ€"Unique, Highly Reactive Products of Arachidonate Peroxidation. Antioxidants and Redox Signaling, 2005, 7, 210-220.	2.5	39
69	Regiochemistry of Neuroprostanes Generated from the Peroxidation of Docosahexaenoic Acid in Vitro and in Vivo. Journal of Biological Chemistry, 2005, 280, 26600-26611.	1.6	65
70	F 2 â€ksoprostanes as Markers of Oxidant Stress: An Overview. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2005, 24, Unit 17.5.	1,1	8
71	Quantification of F 2 â€lsoprostanes by Gas Chromatography/Mass Spectrometry as a Measure of Oxidant Stress. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2005, 24, Unit 17.6.	1.1	3
72	Cyclopentenone Eicosanoids as Mediators of Neurodegeneration: A Pathogenic Mechanism of Oxidative Stress-Mediated and Cyclooxygenase-Mediated Neurotoxicity. Brain Pathology, 2005, 15, 149-158.	2.1	51

#	Article	IF	CITATION
73	The Cyclopentenone Product of Lipid Peroxidation, 15-A2t-Isoprostane, Is Efficiently Metabolized by HepG2 Cells via Conjugation with Glutathione. Chemical Research in Toxicology, 2004, 17, 17-25.	1.7	40
74	Long-Term Vitamin E Deficiency in Mice Decreases Superoxide Radical Production in Brain. Annals of the New York Academy of Sciences, 2004, 1031, 428-431.	1.8	4
75	Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 799, 95-102.	1.2	70
76	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. SSRN Electronic Journal, 0, , .	0.4	0