
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6641317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversal of behavioural phenotype by the cannabinoid-like compound VSN16R in fragile X syndrome mice. Brain, 2022, 145, 76-82.	3.7	4
2	<scp>COVID</scp> â€19 Vaccine Response in People with Multiple Sclerosis. Annals of Neurology, 2022, 91, 89-100.	2.8	119
3	Factors contributing to CSF NfL reduction over time in those starting treatment for multiple sclerosis: An observational study. Multiple Sclerosis and Related Disorders, 2022, 57, 103409.	0.9	1
4	CD19 B cell repopulation after ocrelizumab, alemtuzumab and cladribine: Implications for SARS-CoV-2 vaccinations in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 57, 103448.	0.9	19
5	Seroconversion following COVID-19 vaccination: can we optimize protective response in CD20-treated individuals?. Clinical and Experimental Immunology, 2022, 207, 263-271.	1.1	14
6	Response to COVID-19 booster vaccinations in seronegative people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 64, 103937.	0.9	18
7	Digesting science: Developing educational activities about multiple sclerosis, prevention and treatment to increase the confidence of affected families. Multiple Sclerosis and Related Disorders, 2021, 47, 102624.	0.9	1
8	Highly effective disease-modifying treatment as initial MS therapy. Current Opinion in Neurology, 2021, 34, 286-294.	1.8	9
9	Blunted vaccines responses after ocrelizumab highlight need for immunizations prior to treatment. Multiple Sclerosis and Related Disorders, 2021, 50, 102851.	0.9	9
10	Immunogenicity of biologics used in the treatment of moderate to severe psoriasis. Human Antibodies, 2021, 29, 1-8.	0.6	1
11	Immunogenicity of biologics used in the treatment of inflammatory bowel disease. Human Antibodies, 2021, 29, 225-235.	0.6	2
12	Experience with the COVID-19 AstraZeneca vaccination in people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 52, 103028.	0.9	20
13	COVID-19 vaccines and multiple sclerosis disease-modifying therapies. Multiple Sclerosis and Related Disorders, 2021, 53, 103155.	0.9	12
14	Anti-drug antibodies to antibody-based therapeutics in multiple sclerosis. Human Antibodies, 2021, 29, 255-262.	0.6	1
15	Can rheumatologists stop causing demyelinating disease?. Multiple Sclerosis and Related Disorders, 2021, 53, 103057.	0.9	4
16	Oligodendrocytes, BK channels and remyelination. F1000Research, 2021, 10, 781.	0.8	0
17	Antigen-specific tolerization in human autoimmunity: Inhibition of interferon-beta1a anti-drug antibodies in multiple sclerosis: A case report. Multiple Sclerosis and Related Disorders, 2021, 56, 103284.	0.9	1
18	Systematic approach to selecting licensed drugs for repurposing in the treatment of progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 295-302.	0.9	15

#	Article	IF	CITATIONS
19	Subcutaneous cladribine to treat multiple sclerosis: experience in 208 patients. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110576.	1.5	5
20	Inclusion criteria used in trials of people with progressive multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 279-283.	1.4	3
21	Failed B cell survival factor trials support the importance of memory B cells in multiple sclerosis. European Journal of Neurology, 2020, 27, 221-228.	1.7	29
22	COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clinical and Experimental Immunology, 2020, 202, 149-161.	1.1	155
23	Summary-data-based Mendelian randomization prioritizes potential druggable targets for multiple sclerosis. Brain Communications, 2020, 2, fcaa119.	1.5	16
24	Severe lymphopenia after subcutaneous cladribine in a patient with multiple sclerosis: To vaccinate or not?. ENeurologicalSci, 2020, 21, 100279.	0.5	6
25	<scp>SARSâ€CoV</scp> â€2 and Multiple Sclerosis: Not All Immune Depleting <scp>DMTs</scp> are Equal or Bad. Annals of Neurology, 2020, 87, 794-797.	2.8	45
26	The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Multiple Sclerosis and Related Disorders, 2020, 43, 102174.	0.9	62
27	Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathologica, 2020, 140, 143-167.	3.9	48
28	Detecting and predicting neutralization of alemtuzumab responses in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	7
29	The ocrelizumab phase II extension trial suggests the potential to improve the risk: Benefit balance in multiple sclerosis Multiple Sclerosis and Related Disorders, 2020, 44, 102279.	0.9	77
30	The β4-Subunit of the Large-Conductance Potassium Ion Channel KCa1.1 Regulates Outflow Facility in Mice. , 2020, 61, 41.		7
31	Synaptic Loss in Multiple Sclerosis Spinal Cord. Annals of Neurology, 2020, 88, 619-625.	2.8	17
32	A cell-based assay for the detection of neutralizing antibodies against alemtuzumab. BioTechniques, 2020, 68, 185-190.	0.8	2
33	The Irony of Humanization: Alemtuzumab, the First, But One of the Most Immunogenic, Humanized Monoclonal Antibodies. Frontiers in Immunology, 2020, 11, 124.	2.2	21
34	GloBody Technology: Detecting Anti-Drug Antibody against VH/VL domains. Scientific Reports, 2020, 10, 1860.	1.6	6
35	Severe skin reactions associated with cladribine in people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 43, 102140.	0.9	6
36	B cells and multiple sclerosis spinal cord pathology. Brain Pathology, 2020, 30, 730-731.	2.1	0

#	Article	IF	CITATIONS
37	Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clinical and Experimental Immunology, 2020, 202, 193-209.	1.1	83
38	Cost of disease modifying therapies for multiple sclerosis: Is front-loading the answer?. Journal of the Neurological Sciences, 2019, 404, 19-28.	0.3	10
39	Autoimmune encephalomyelitis in <scp>NOD</scp> mice is not initially a progressive multiple sclerosis model. Annals of Clinical and Translational Neurology, 2019, 6, 1362-1372.	1.7	14
40	The Cannabinoid-Like Compound, VSN16R, Acts on Large Conductance, Ca2+-Activated K+ Channels to Modulate Hippocampal CA1 Pyramidal Neuron Firing. Pharmaceuticals, 2019, 12, 104.	1.7	5
41	Plasma cell and B cell-targeted treatments for use in advanced multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 35, 19-25.	0.9	13
42	Potential mechanisms of action related to the efficacy and safety of cladribine. Multiple Sclerosis and Related Disorders, 2019, 30, 176-186.	0.9	57
43	Treating the ineligible: Disease modification in people with multiple sclerosis beyond NHS England commissioning policies. Multiple Sclerosis and Related Disorders, 2019, 27, 247-253.	0.9	10
44	Alemtuzumab depletion failure can occur in multiple sclerosis. Immunology, 2018, 154, 253-260.	2.0	32
45	Cover Image, Volume 20, Issue 4. Diabetes, Obesity and Metabolism, 2018, 20, i-i.	2.2	0
46	Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. Journal of Neurology, 2018, 265, 1199-1209.	1.8	120
47	Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathology, 2018, 28, 334-348.	2.1	66
48	LHâ€21 and abnormal cannabidiol improve βâ€cell function in isolated human and mouse islets through GPR55â€dependent and â€independent signalling. Diabetes, Obesity and Metabolism, 2018, 20, 930-942.	2.2	23
49	Positive impact of cladribine on quality of life in people with relapsing multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1461-1468.	1.4	22
50	Learning from other autoimmunities to understand targeting of B cells to control multiple sclerosis. Brain, 2018, 141, 2834-2847.	3.7	43
51	Disease activity in progressive multiple sclerosis can be effectively reduced by cladribine. Multiple Sclerosis and Related Disorders, 2018, 24, 20-27.	0.9	16
52	Oligoclonal bands in multiple sclerosis; Functional significance and therapeutic implications. Does the specificity matter?. Multiple Sclerosis and Related Disorders, 2018, 25, 131-137.	0.9	37
53	Cladribine: Off-label disease modification for people with multiple sclerosis in resource-poor settings?. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2018, 4, 205521731878376.	0.5	7
54	Cladribine: mechanisms and mysteries in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1266-1271.	0.9	61

#	Article	IF	CITATIONS
55	Increased expression of colonyâ€stimulating factorâ€1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia, 2018, 66, 2108-2125.	2.5	36
56	Is multiple sclerosis a length-dependent central axonopathy? The case for therapeutic lag and the asynchronous progressive MS hypotheses. Multiple Sclerosis and Related Disorders, 2017, 12, 70-78.	0.9	92
57	Memory B Cells are Major Targets for Effective Immunotherapy in Relapsing Multiple Sclerosis. EBioMedicine, 2017, 16, 41-50.	2.7	225
58	Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis. Multiple Sclerosis and Related Disorders, 2017, 14, 46-50.	0.9	18
59	How to start a blog. Practical Neurology, 2017, 17, 224-228.	0.5	1
60	Interpreting Lymphocyte Reconstitution Data From the Pivotal Phase 3 Trials of Alemtuzumab. JAMA Neurology, 2017, 74, 961.	4.5	204
61	Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e360.	3.1	121
62	Depletion of <scp>CD</scp> 52â€positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immuneâ€tolerance promoting <scp>CD</scp> 8 Tâ€cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology, 2017, 150, 444-455.	2.0	43
63	Marked neutropenia: Significant but rare in people with multiple sclerosis after alemtuzumab treatment. Multiple Sclerosis and Related Disorders, 2017, 18, 181-183.	0.9	33
64	Neurofilament light as an immune target for pathogenic antibodies. Immunology, 2017, 152, 580-588.	2.0	14
65	Cladribine to treat disease exacerbation after fingolimod discontinuation in progressive multiple sclerosis. Annals of Clinical and Translational Neurology, 2017, 4, 506-511.	1.7	16
66	Big conductance calciumâ€activated potassium channel openers control spasticity without sedation. British Journal of Pharmacology, 2017, 174, 2662-2681.	2.7	22
67	Disease modification in advanced MS: Focus on upper limb function. Multiple Sclerosis Journal, 2017, 23, 1956-1957.	1.4	8
68	Antidote to cannabinoid intoxication: the CB ₁ receptor inverse agonist, AM251, reverses hypothermic effects of the CB ₁ receptor agonist, CBâ€13, in mice. British Journal of Pharmacology, 2017, 174, 3790-3794.	2.7	17
69	Validation of an environmentally-friendly and affordable cardboard 9-hole peg test. Multiple Sclerosis and Related Disorders, 2017, 17, 172-176.	0.9	6
70	PO134â€Personalised dosing of cladribine to treat multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A47.4-A48.	0.9	1
71	CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis – Targeting T or B cells?. Multiple Sclerosis and Related Disorders, 2016, 9, 110-117.	0.9	19
72	Plasma tau in Alzheimer disease. Neurology, 2016, 87, 1827-1835.	1.5	371

#	Article	IF	CITATIONS
73	<scp>GPR55</scp> â€dependent stimulation of insulin secretion from isolated mouse and human islets of <scp>L</scp> angerhans. Diabetes, Obesity and Metabolism, 2016, 18, 1263-1273.	2.2	51
74	Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi <scp>ABH</scp> mice. Immunology, 2016, 149, 146-156.	2.0	35
75	Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk. Scientific Reports, 2016, 6, 33307.	1.6	19
76	How to refer to people with disease in research outputs: The disconnection between academic practise and that preferred by people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2016, 10, 127-133.	0.9	6
77	TREATING MULTIPLE SCLEROSIS WITH CLADRIBINE. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, e1.26-e1.	0.9	12
78	Pentraxinâ€3 is upregulated in the central nervous system during MS and EAE, but does not modulate experimental neurological disease. European Journal of Immunology, 2016, 46, 701-711.	1.6	22
79	Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. Journal of Biological Chemistry, 2016, 291, 4356-4373.	1.6	66
80	Characterisation of Transcriptional Changes in the Spinal Cord of the Progressive Experimental Autoimmune Encephalomyelitis Biozzi ABH Mouse Model by RNA Sequencing. PLoS ONE, 2016, 11, e0157754.	1.1	22
81	Complement activation and expression during chronic relapsing experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. Clinical and Experimental Immunology, 2015, 180, 432-441.	1.1	8
82	Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 2015, 68, 660-667.	5.3	69
83	The problem with repurposing: Is there really an alternative to Big Pharma for developing new drugs for multiple sclerosis?. Multiple Sclerosis and Related Disorders, 2015, 4, 3-5.	0.9	11
84	Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids. Journal of NeuroImmune Pharmacology, 2015, 10, 281-292.	2.1	42
85	Cannabinoids fail to show evidence of slowing down the progression of multiple sclerosis. Evidence-Based Medicine, 2015, 20, 124-124.	0.6	1
86	Endocannabinoids in Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Handbook of Experimental Pharmacology, 2015, 231, 213-231.	0.9	29
87	No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e158.	3.1	109
88	Brain Endothelial miR-146a Negatively Modulates T-Cell Adhesion through Repressing Multiple Targets to Inhibit NF-κB Activation. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 412-423.	2.4	76
89	Mouse Models of Multiple Sclerosis: Lost in Translation?. Current Pharmaceutical Design, 2015, 21, 2440-2452.	0.9	39
90	CANCER RISK IN MULTIPLE SCLEROSIS PATIENTS TAKING CLADRIBINE. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.47-e4.	0.9	0

#	Article	IF	CITATIONS
91	Two Years Later: Journals Are Not Yet Enforcing the ARRIVE Guidelines on Reporting Standards for Pre-Clinical Animal Studies. PLoS Biology, 2014, 12, e1001756.	2.6	254
92	Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if used wisely. Multiple Sclerosis and Related Disorders, 2014, 3, 555-564.	0.9	72
93	Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis. Brain, 2014, 137, 92-108.	3.7	36
94	MSer – A new, neutral descriptor for someone with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2014, 3, 31-33.	0.9	4
95	Simvastatin in patients with progressive multiple sclerosis. Lancet, The, 2014, 384, 952.	6.3	2
96	Neurofilament light antibodies in serum reflect response to natalizumab treatment in multiple sclerosis Journal, 2014, 20, 1355-1362.	1.4	32
97	Control of spasticity in a multiple sclerosis model using central nervous systemâ€excluded CB ₁ cannabinoid receptor agonists. FASEB Journal, 2014, 28, 117-130.	0.2	32
98	The epigenetics of multiple sclerosis and other related disorders. Multiple Sclerosis and Related Disorders, 2014, 3, 163-175.	0.9	14
99	MicroRNAâ€155 negatively affects blood–brain barrier function during neuroinflammation. FASEB Journal, 2014, 28, 2551-2565.	0.2	220
100	Novel pathogenic epitopes of myelin oligodendrocyte glycoprotein induce experimental autoimmune encephalomyelitis in C57 <scp>BL</scp> /6 mice. Immunology, 2013, 140, 456-464.	2.0	18
101	Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis. Acta Neuropathologica Communications, 2013, 1, 84.	2.4	26
102	Control of experimental spasticity by targeting the degradation of endocannabinoids using selective fatty acid amide hydrolase inhibitors. Multiple Sclerosis Journal, 2013, 19, 1896-1904.	1.4	34
103	Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2) Tj ETQq1 1 (2013, 8, e76907.).784314 r 1.1	gBT /Overloc 43
104	Neuroprotection in a Novel Mouse Model of Multiple Sclerosis. PLoS ONE, 2013, 8, e79188.	1.1	32
105	In Vitro and In Vivo Models of Multiple Sclerosis. CNS and Neurological Disorders - Drug Targets, 2012, 11, 570-588.	0.8	119
106	Publication guidelines for refereeing and reporting on animal use in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2012, 242, 78-83.	1.1	52
107	Practical guide to the induction of relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. Multiple Sclerosis and Related Disorders, 2012, 1, 29-38.	0.9	60
108	Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Multiple Sclerosis and Related Disorders, 2012, 1, 15-28.	0.9	78

#	Article	IF	CITATIONS
109	The biology that underpins the therapeutic potential of cannabis-based medicines for the control of spasticity in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2012, 1, 64-75.	0.9	28
110	Checklist for reporting and reviewing studies of experimental animal models of multiple sclerosis and related disorders. Multiple Sclerosis and Related Disorders, 2012, 1, 111-115.	0.9	18
111	Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis. Multiple Sclerosis Journal, 2011, 17, 939-948.	1.4	52
112	Critical appraisal of animal models of multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 647-657.	1.4	91
113	Control of immune-mediated disease of the central nervous system requires the use of a neuroactive agent: elucidation by the action of mitoxantrone. Clinical and Experimental Immunology, 2008, 90, 124-128.	1.1	23
114	Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Journal of Neuroimmunology, 2008, 193, 120-129.	1.1	91
115	An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss. Journal of Neuroimmunology, 2008, 201-202, 200-211.	1.1	59
116	The Endocannabinoid System and Multiple Sclerosis. Current Pharmaceutical Design, 2008, 14, 2326-2336.	0.9	56
117	Vascular pharmacology of a novel cannabinoidâ€like compound, 3â€(5â€dimethylcarbamoylâ€pentâ€lâ€enyl)â€ <i>N</i> â€{2â€hydroxyâ€lâ€methylâ€ethyl)benzamide (VSN16) Journal of Pharmacology, 2007, 152, 751-764.	i a.t he rat	. B r itish
118	In silico patent searching reveals a new cannabinoid receptor. Trends in Pharmacological Sciences, 2006, 27, 1-4.	4.0	302
119	Autoimmune tolerance eliminates relapses but fails to halt progression in a model of multiple sclerosis. Journal of Neuroimmunology, 2005, 165, 41-52.	1.1	70
120	Biozzi mice: Of mice and human neurological diseases. Journal of Neuroimmunology, 2005, 165, 1-10.	1.1	65
121	Suppression of Autoimmune Retinal Disease by Lovastatin Does Not Require Th2 Cytokine Induction. Journal of Immunology, 2005, 174, 2327-2335.	0.4	66
122	Potential of statins for the treatment of multiple sclerosis. Lancet Neurology, The, 2003, 2, 9-10.	4.9	13
123	The therapeutic potential of cannabis. Lancet Neurology, The, 2003, 2, 291-298.	4.9	299
124	Gene therapy in autoimmune, demyelinating disease of the central nervous system. Gene Therapy, 2003, 10, 844-853.	2.3	38
125	Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain, 2003, 126, 2191-2202.	3.7	330
126	The therapeutic potential of cannabis in multiple sclerosis. Expert Opinion on Investigational Drugs, 2003, 12, 561-567.	1.9	32

#	Article	IF	CITATIONS
127	Lovastatin inhibits brain endothelial cell Rhoâ€mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB Journal, 2003, 17, 1-16.	0.2	201
128	Inhibition of Rho GTPases with Protein Prenyltransferase Inhibitors Prevents Leukocyte Recruitment to the Central Nervous System and Attenuates Clinical Signs of Disease in an Animal Model of Multiple Sclerosis. Journal of Immunology, 2002, 168, 4087-4094.	0.4	105
129	Endocannabinoids control spasticity in a multiple sclerosis model. FASEB Journal, 2001, 15, 300-302.	0.2	371
130	Experimental autoimmune uveoretinitis in mice (Biozzi ABH and NOD) expressing the autoimmune-associated H-2Ag7 molecule: identification of a uveitogenic epitope. Journal of Neuroimmunology, 2001, 118, 212-222.	1.1	12
131	Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature, 2000, 404, 84-87.	13.7	522
132	Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2Ag7) mice share an amino acid motif. Journal of Immunology, 1996, 156, 3000-8.	0.4	50
133	Experimental encephalomyelitis modulates inositol and taurine in the spinal cord of biozzi mice. Magnetic Resonance in Medicine, 1994, 32, 692-697.	1.9	12
134	Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. European Journal of Immunology, 1994, 24, 2040-2048.	1.6	235
135	Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. Journal of Immunology, 1994, 153, 4349-56.	0.4	271
136	Identification of a major encephalitogenic epitope of proteolipid protein (residues 56-70) for the induction of experimental allergic encephalomyelitis in Biozzi AB/H and nonobese diabetic mice. Journal of Immunology, 1993, 150, 5666-72.	0.4	57
137	Therapy of chronic relapsing experimental allergic encephalomyelitis and the role of the blood-brain barrier: elucidation by the action of Brequinar sodium. Journal of Neuroimmunology, 1992, 38, 53-62.	1.1	30
138	Cytokines in the central nervous system of mice during chronic relapsing experimental allergic encephalomyelitis. Cellular Immunology, 1991, 134, 505-510.	1.4	95
139	Mechanisms of immune-mediated demyelinating disease of the central nervous system. Neurochemical Research, 1991, 16, 1067-1072.	1.6	6
140	Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice. Journal of Neuroimmunology, 1990, 28, 261-270.	1.1	174
141	Antigen-specific regulation of T lymphocyte proliferative responses to contact-sensitizing chemicals in the guinea pig. Cellular Immunology, 1989, 119, 153-159.	1.4	9
142	Phenotypic Analysis of Guinea Pig Langerhans Cells with Antibodies Directed against Leucocyte Surface Antigens. International Archives of Allergy and Immunology, 1988, 86, 350-355.	0.9	17
143	Induction of sensitization and tolerance in contact sensitivity with haptenated epidermal cells in the guinea-pig. Immunology, 1987, 62, 659-64.	2.0	1
144	Oligodendrocytes, BK channels and the preservation of myelin. F1000Research, 0, 10, 781.	0.8	2

#	Article	IF	CITATIONS
145	An expert opinion: Optimisation of pharmacological management of multiple sclerosis related spasticity. Advances in Clinical Neuroscience & Rehabilitation: ACNR, 0, , .	0.1	0