Anna Janaszewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6641293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Studies of Cold Nanoparticles Functionalised with Thioglucose and its Cytotoxic Effect. ChemistrySelect, 2021, 6, 1230-1237.	1.5	1
2	Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. International Journal of Molecular Sciences, 2021, 22, 2912.	4.1	54
3	Star-Shaped Poly(furfuryl glycidyl ether)-Block-Poly(glyceryl glycerol ether) as an Efficient Agent for the Enhancement of Nifuratel Solubility and for the Formation of Injectable and Self-Healable Hydrogel Platforms for the Gynaecological Therapies. International Journal of Molecular Sciences, 2021. 22. 8386.	4.1	10
4	Synthesis and Shaping of Core–Shell Tecto Dendrimers for Biomedical Applications. Bioconjugate Chemistry, 2021, 32, 225-233.	3.6	11
5	Application of new lysine-based peptide dendrimers D3K2 and D3C2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorganic Chemistry, 2020, 95, 103504.	4.1	47
6	Hydrophilic Polyhedral Oligomeric Silsesquioxane, POSS(OH)32, as a Complexing Nanocarrier for Doxorubicin and Daunorubicin. Materials, 2020, 13, 5512.	2.9	3
7	Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery. International Journal of Molecular Sciences, 2020, 21, 3138.	4.1	38
8	Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Frontiers in Pharmacology, 2020, 11, 574.	3.5	21
9	In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer. International Journal of Molecular Sciences, 2020, 21, 4456.	4.1	13
10	Influence of Free Fatty Acids on Lipid Membrane–Nisin Interaction. Langmuir, 2020, 36, 13535-13544.	3.5	12
11	Sugar Modification Enhances Cytotoxic Activity of PAMAM-Doxorubicin Conjugate in Glucose-Deprived MCF-7 Cells – Possible Role of GLUT1 Transporter. Pharmaceutical Research, 2019, 36, 140.	3.5	38
12	Cytotoxicity of Dendrimers. Biomolecules, 2019, 9, 330.	4.0	231
13	Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids and Surfaces B: Biointerfaces, 2019, 181, 959-962.	5.0	15
14	Multicomponent Conjugates of Anticancer Drugs and Monoclonal Antibody with PAMAM Dendrimers to Increase Efficacy of HER-2 Positive Breast Cancer Therapy. Pharmaceutical Research, 2019, 36, 154.	3.5	54
15	Molecular Mechanisms of Antitumor Activity of PAMAM Dendrimer Conjugates with Anticancer Drugs and a Monoclonal Antibody. Polymers, 2019, 11, 1422.	4.5	11
16	Fludarabine-Specific Molecular Interactions with Maltose-Modified Poly(propyleneimine) Dendrimer Enable Effective Cell Entry of the Active Drug Form: Comparison with Clofarabine. Biomacromolecules, 2019, 20, 1429-1442.	5.4	16
17	Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Progress in Polymer Science, 2019, 90, 35-117.	24.7	247
18	Pyrrolidone Modification Prevents PAMAM Dendrimers from Activation of Pro-Inflammatory Signaling Pathways in Human Monocytes. Molecular Pharmaceutics, 2018, 15, 12-20.	4.6	17

Anna Janaszewska

#	Article	IF	CITATIONS
19	Multivalent interacting glycodendrimer to prevent amyloid-peptide fibril formation induced by Cu(II): A multidisciplinary approach. Nano Research, 2018, 11, 1204-1226.	10.4	27
20	Conjugate of PAMAM Dendrimer, Doxorubicin and Monoclonal Antibody—Trastuzumab: The New Approach of a Well-Known Strategy. Polymers, 2018, 10, 187.	4.5	38
21	Complexes of Indomethacin with 4-Carbomethoxy-pyrrolidone PAMAM Dendrimers Show Improved Anti-inflammatory Properties and Temperature-Dependent Binding and Release Profile. Molecular Pharmaceutics, 2018, 15, 3573-3582.	4.6	15
22	Determination of non-traditional intrinsic fluorescence (NTIF) emission sites in 1-(4-carbomethoxypyrrolidone)-PAMAM dendrimers using CNDP-based quenching studies. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	17
23	Intrinsic Fluorescence of PAMAM Dendrimers—Quenching Studies. Polymers, 2018, 10, 540.	4.5	16
24	Mechanisms of Internalization of Maltose-Modified Poly(propyleneimine) Glycodendrimers into Leukemic Cell Lines. Biomacromolecules, 2017, 18, 1509-1520.	5.4	19
25	Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin—Constants and mechanisms. Colloids and Surfaces B: Biointerfaces, 2017, 155, 11-16.	5.0	9
26	Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines. Molecular Pharmaceutics, 2017, 14, 1821-1830.	4.6	24
27	Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins—Human serum albumin and lysozyme. Colloids and Surfaces B: Biointerfaces, 2017, 152, 18-28.	5.0	10
28	Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell. Colloids and Surfaces B: Biointerfaces, 2017, 159, 211-216.	5.0	31
29	Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS). Materials, 2017, 10, 559.	2.9	11
30	Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity. Molecules, 2017, 22, 345.	3.8	15
31	Two for the Price of One: PAMAM-Dendrimers with Mixed Phosphoryl Choline and Oligomeric Poly(Caprolactone) Surfaces. Bioconjugate Chemistry, 2016, 27, 1547-1557.	3.6	12
32	In Vitro Studies of Polyhedral Oligo Silsesquioxanes: Evidence for Their Low Cytotoxicity. Materials, 2015, 8, 6062-6070.	2.9	21
33	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, 485, 288-294.	5.2	71
34	Interactions of dendritic glycopolymer with erythrocytes, red blood cell ghosts and membrane enzymes. International Journal of Pharmaceutics, 2015, 496, 475-488.	5.2	13
35	PAMAM dendrimer with 4-carbomethoxypyrrolidone—In vitro assessment of neurotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 409-411.	3.3	23
36	Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chemical Society Reviews, 2015, 44, 3968-3996.	38.1	114

ANNA JANASZEWSKA

#	Article	IF	CITATIONS
37	How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release, 2014, 181, 40-52.	9.9	93
38	Enhancement of antimicrobial activity by co-administration of poly(propylene imine) dendrimers and nadifloxacin. New Journal of Chemistry, 2013, 37, 4156.	2.8	18
39	Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 461-464.	3.3	59
40	Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells. Molecules, 2013, 18, 12222-12240.	3.8	19
41	Antimicrobial activity of poly(propylene imine) dendrimers. New Journal of Chemistry, 2012, 36, 2215.	2.8	46
42	Surface modification of PAMAM dendrimer improves its biocompatibility. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 815-817.	3.3	96
43	Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats. Journal of Physiology and Biochemistry, 2012, 68, 447-454.	3.0	9
44	<i>In vivo</i> toxicity of poly(propyleneimine) dendrimers. Journal of Biomedical Materials Research - Part A, 2011, 99A, 261-268.	4.0	96
45	Simple determination of peroxyl radicalâ€ŧrapping capacity. IUBMB Life, 1998, 46, 519-528.	3.4	23
46	Editorial. VI PhD Students National Conference of Life Sciences "BioOpen― Acta Universitatis Lodziensis Folia Biologica Et Oecologica, 0, 17, 5-6.	1.0	0