
Alina Mariana Balu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6641065/publications.pdf Version: 2024-02-01

ALINA MADIANA RALLI

#	Article	IF	CITATIONS
1	Humins as bio-based template for the synthesis of alumina foams. Molecular Catalysis, 2022, 526, 112363.	1.0	Ο
2	Exploring the potential of biomass-templated Nb/ZnO nanocatalysts for the sustainable synthesis of N-heterocycles. Catalysis Today, 2021, 368, 243-249.	2.2	8
3	Insulating rigid polyurethane foams from laurel tree pruning based polyol. Journal of Applied Polymer Science, 2021, 138, 49789.	1.3	4
4	Continuous flow study of isoeugenol to vanillin: A bio-based iron oxide catalyst. Catalysis Today, 2021, 368, 281-290.	2.2	3
5	Biomass valorization: Catalytic approaches using benign-by-design nanomaterials. Advances in Inorganic Chemistry, 2021, 77, 27-58.	0.4	5
6	Metal doping of porous materials <i>via</i> a post-synthetic mechano-chemical approach: a general route to design low-loaded versatile catalytic systems. Catalysis Science and Technology, 2021, 11, 2103-2109.	2.1	2
7	Mechanochemical Preparation of Magnetically Separable Fe and Cu-Based Bimetallic Nanocatalysts for Vanillin Production. Nanomaterials, 2021, 11, 1050.	1.9	2
8	Mechanochemical Synthesis of Nickel-Modified Metal–Organic Frameworks for Reduction Reactions. Catalysts, 2021, 11, 526.	1.6	7
9	Innovative nanomaterials for energy storage: Moving towardÂnature-inspired systems. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100520.	3.2	5
10	Heterogeneous Catalysis to Drive the Waste-to-Pharma Concept: From Furanics to Active Pharmaceutical Ingredients. Molecules, 2021, 26, 6738.	1.7	3
11	Characterization and Antioxidant Activity of Microwave-Extracted Phenolic Compounds from Biomass Residues. ACS Sustainable Chemistry and Engineering, 2020, 8, 1513-1519.	3.2	20
12	Evaluation of acid properties of mechanochemically synthesized supported niobium oxide catalysts in the alkylation of toluene. Molecular Catalysis, 2020, 493, 111092.	1.0	8
13	Nanomaterials and catalysis for green chemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 48-55.	3.2	53
14	Combined Extraction/Purification-Catalytic Microwave-Assisted Conversion of Laurus nobilis L. Pruning Waste Polysaccharides into Methyl Levulinate. ACS Sustainable Chemistry and Engineering, 2020, , .	3.2	1
15	Lignocellulosics to biofuels: An overview of recent and relevant advances. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 21-25.	3.2	28
16	Sustainable and recyclable heterogenous palladium catalysts from rice husk-derived biosilicates for Suzuki-Miyaura cross-couplings, aerobic oxidations and stereoselective cascade carbocyclizations. Scientific Reports, 2020, 10, 6407.	1.6	19
17	Tuneable Acidity in Fluorinated Al-SBA-15 Materials for the Esterification of Valeric Acid to Alkyl Valerates. Frontiers in Chemistry, 2020, 8, 42.	1.8	6
18	Effect of Bay Leaves Essential Oil Concentration on the Properties of Biodegradable Carboxymethyl Cellulose-Based Edible Films. Materials, 2019, 12, 2356.	1.3	31

#	Article	IF	CITATIONS
19	Furfural production in a biphasic system using a carbonaceous solid acid catalyst. Applied Catalysis A: General, 2019, 585, 117180.	2.2	31
20	Reconstruction of humins formation mechanism from decomposition products: A GC-MS study based on catalytic continuous flow depolymerizations. Molecular Catalysis, 2019, 479, 110564.	1.0	16
21	Continuous flow transfer hydrogenation of biomass derived methyl levulinate over Zr containing zeolites: Insights into the role of the catalyst acidity. Molecular Catalysis, 2019, 477, 110522.	1.0	15
22	Spent Coffee Grounds-Templated Magnetic Nanocatalysts for Mild Oxidations. ACS Sustainable Chemistry and Engineering, 2019, 7, 17030-17038.	3.2	13
23	Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis: A comparative study with other traditional and green novel techniques. Industrial Crops and Products, 2019, 141, 111805.	2.5	39
24	Continuous flow synthesis of amines from the cascade reactions of nitriles and carbonyl-containing compounds promoted by Pt-modified titania catalysts. Green Chemistry, 2019, 21, 300-306.	4.6	21
25	Post-synthetic Mechanochemical Incorporation of Al-Species into the Framework of Porous Materials: Toward More Sustainable Redox Chemistries. ACS Sustainable Chemistry and Engineering, 2019, 7, 9537-9543.	3.2	11
26	Mechanochemically Synthesized Supported Magnetic Fe-Nanoparticles as Catalysts for Efficient Vanillin Production. Catalysts, 2019, 9, 290.	1.6	8
27	Continuous Flow Synthesis of High Valuable N-Heterocycles via Catalytic Conversion of Levulinic Acid. Frontiers in Chemistry, 2019, 7, 103.	1.8	21
28	Versatile Sulfathiazole-Functionalized Magnetic Nanoparticles as Catalyst in Oxidation and Alkylation Reactions. Catalysts, 2019, 9, 348.	1.6	9
29	Continuous-Flow Hydrogenation of Methyl Levulinate Promoted by Zr-Based Mesoporous Materials. Catalysts, 2019, 9, 142.	1.6	23
30	Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 2019, 11, 2022-2042.	1.8	92
31	Controllable Design of Polypyrrole-Iron Oxide Nanocoral Architectures for Supercapacitors with Ultrahigh Cycling Stability. ACS Applied Energy Materials, 2019, 2, 2161-2168.	2.5	25
32	One-Pot Cu/TiO2 Nanoparticles Synthesis for Trans-Ferulic Acid Conversion into Vanillin. Molecules, 2019, 24, 3985.	1.7	12
33	International Perspectives on Green and Sustainable Chemistry Education via Systems Thinking. Journal of Chemical Education, 2019, 96, 2794-2804.	1.1	24
34	Mechanochemical Preparation of Novel Polysaccharide-Supported Nb2O5 Catalysts. Catalysts, 2019, 9, 38.	1.6	6
35	Environmental Catalysis: Present and Future. ChemCatChem, 2019, 11, 18-38.	1.8	87
36	Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production, 2019, 207, 411-417.	4.6	85

#	Article	IF	CITATIONS
37	Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol. Chemical Engineering Science, 2019, 194, 78-84.	1.9	43
38	Continuous Flow Conversion of Biomass-Derived Methyl Levulinate into Î ³ -Valerolactone Using Functional Metal Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 6746-6752.	3.2	65
39	Highly efficient direct oxygen electro-reduction by partially unfolded laccases immobilized on waste-derived magnetically separable nanoparticles. Nanoscale, 2018, 10, 3961-3968.	2.8	31
40	Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catalysis Today, 2018, 302, 2-15.	2.2	125
41	Synthesis of carbon-based fluorescent polymers driven by catalytically active magnetic bioconjugates. Green Chemistry, 2018, 20, 225-229.	4.6	34
42	Benign-by-Design Orange Peel-Templated Nanocatalysts for Continuous Flow Conversion of Levulinic Acid to N-Heterocycles. ACS Sustainable Chemistry and Engineering, 2018, 6, 16637-16644.	3.2	38
43	Sol-Gel Immobilisation of Lipases: Towards Active and Stable Biocatalysts for the Esterification of Valeric Acid. Molecules, 2018, 23, 2283.	1.7	22
44	Conversion of Palmitic Acid Over Bi-functional Ni/ZSM-5 Catalyst: Effect of Stoichiometric Ni/Al Molar Ratio. Topics in Catalysis, 2018, 61, 1757-1768.	1.3	32
45	Encapsulated Laccases as Effective Electrocatalysts for Oxygen Reduction Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 11058-11062.	3.2	18
46	Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Frontiers in Chemistry, 2018, 6, 285.	1.8	30
47	Integrated Mechanochemical/Microwave-Assisted Approach for the Synthesis of Biogenic Silica-Based Catalysts from Rice Husk Waste. ACS Sustainable Chemistry and Engineering, 2018, 6, 11555-11562.	3.2	22
48	Ultrasound-Assisted Esterification of Valeric Acid to Alkyl Valerates Promoted by Biosilicified Lipases. Frontiers in Chemistry, 2018, 6, 197.	1.8	16
49	A comprehensive study on the continuous flow synthesis of supported iron oxide nanoparticles on porous silicates and their catalytic applications. Reaction Chemistry and Engineering, 2018, 3, 757-768.	1.9	8
50	Catalytic Transfer Hydrogenolysis of Lignin-Derived Aromatic Ethers Promoted by Bimetallic Pd/Ni Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 9269-9276.	3.2	112
51	Mechanochemical synthesis of supported cobalt oxide nanoparticles on mesoporous materials as versatile bifunctional catalysts. Microporous and Mesoporous Materials, 2018, 272, 129-136.	2.2	39
52	Mechanochemically synthesized Ag-based nanohybrids with unprecedented low toxicity in biomedical applications. Environmental Research, 2017, 154, 204-211.	3.7	12
53	Activity of continuous flow synthesized Pd-based nanocatalysts in the flow hydroconversion of furfural. Tetrahedron, 2017, 73, 5599-5604.	1.0	34
54	Solventless mechanochemical preparation of novel magnetic bioconjugates. Chemical Communications, 2017, 53, 7635-7637.	2.2	26

#	Article	IF	CITATIONS
55	Towards the photophysical studies of humin by-products. Chemical Communications, 2017, 53, 7015-7017.	2.2	14
56	Efficient and Environmentally Friendly Microwave-Assisted Synthesis of Catalytically Active Magnetic Metallic Ni Nanoparticles. ACS Sustainable Chemistry and Engineering, 2017, 5, 11584-11587.	3.2	28
57	Selective Oxidation of Isoeugenol to Vanillin over Mechanochemically Synthesized Aluminosilicate Supported Transition Metal Catalysts. ChemistrySelect, 2017, 2, 9546-9551.	0.7	16
58	Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chemistry, 2017, 19, 4423-4434.	4.6	57
59	Mechanochemical design of hemoglobin-functionalised magnetic nanomaterials for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 16404-16411.	5.2	18
60	Wheat bran valorisation: Towards photocatalytic nanomaterials for benzyl alcohol photo-oxidation. Journal of Environmental Management, 2017, 203, 768-773.	3.8	11
61	Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin. Beilstein Journal of Organic Chemistry, 2017, 13, 1439-1445.	1.3	29
62	New bio-nanocomposites based on iron oxides and polysaccharides applied to oxidation and alkylation reactions. Beilstein Journal of Organic Chemistry, 2017, 13, 1982-1993.	1.3	14
63	Sustainable Biomaterials: Current Trends, Challenges and Applications. Molecules, 2016, 21, 48.	1.7	31
64	Catalytic Conversion of Biomass. Catalysts, 2016, 6, 148.	1.6	4
65	Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation. Nanomaterials, 2016, 6, 93.	1.9	41
66	Insights into the activity, selectivity and stability of heterogeneous catalysts in the continuous flow hydroconversion of furfural. Catalysis Science and Technology, 2016, 6, 4705-4711.	2.1	45
67	Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts. Scientific Reports, 2016, 6, 32719.	1.6	11
68	Insights into the selective hydrogenation of levulinic acid to Î ³ -valerolactone using supported mono- and bimetallic catalysts. Journal of Molecular Catalysis A, 2016, 417, 145-152.	4.8	42
69	Mild ultrasound-assisted synthesis of TiO 2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Applied Catalysis B: Environmental, 2016, 183, 107-112.	10.8	103
70	Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chemical Communications, 2015, 51, 6698-6713.	2.2	270
71	Biomassâ€Derived Porous Carbon Materials: Synthesis and Catalytic Applications. ChemCatChem, 2015, 7, 1608-1629.	1.8	227
72	Mechanochemical preparation of advanced catalytically active bifunctional Pd-containing nanomaterials for aqueous phase hydrogenation. Catalysis Science and Technology, 2015, 5, 2085-2091.	2.1	12

Alina Mariana Balu

#	Article	IF	CITATIONS
73	MAGBONS: Novel Magnetically Separable Carbonaceous Nanohybrids from Porous Polysaccharides. ChemCatChem, 2014, 6, 2847-2853.	1.8	8
74	Solventless mechanochemical synthesis of magnetic functionalized catalytically active mesoporous SBA-15 nanocomposites. Journal of Materials Chemistry A, 2014, 2, 387-393.	5.2	40
75	Activity of amino-functionalised mesoporous solid bases in microwave-assisted condensation reactions. Catalysis Communications, 2013, 33, 1-6.	1.6	12
76	Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Microwave Irradiation with Hydrogenâ€Donating Solvents. ChemCatChem, 2013, 5, 977-985.	1.8	93
77	Fractionation of Organosolv Lignin from Olive Tree Clippings and its Valorization to Simple Phenolic Compounds. ChemSusChem, 2013, 6, 529-536.	3.6	82
78	Versatile low-loaded mechanochemically synthesized supported iron oxide nanoparticles for continuous flow alkylations. RSC Advances, 2013, 3, 16292.	1.7	19
79	Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chemistry, 2013, 15, 1232.	4.6	43
80	Iron oxide functionalised MIL-101 materials in aqueous phase selective oxidations. Applied Catalysis A: General, 2013, 455, 261-266.	2.2	38
81	Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol. Green Chemistry, 2013, 15, 1530.	4.6	100
82	Laser-driven heterogeneous catalysis: efficient amide formation catalysed by Au/SiO2 systems. Green Chemistry, 2013, 15, 2043.	4.6	58
83	Simple Preparation of Novel Metal-Containing Mesoporous Starches. Materials, 2013, 6, 1891-1902.	1.3	8
84	From Waste to Healing Biopolymers: Biomedical Applications of Bio-Collagenic Materials Extracted from Industrial Leather Residues in Wound Healing. Materials, 2013, 6, 1599-1607.	1.3	17
85	Microwave-assisted mild-temperature preparation of neodymium-doped titania for the improved photodegradation of water contaminants. Applied Catalysis A: General, 2012, 441-442, 47-53.	2.2	36
86	Catalytic transformations of biomass-derived acids into advanced biofuels. Catalysis Today, 2012, 195, 162-168.	2.2	108
87	Valorisation of Orange Peel Residues: Waste to Biochemicals and Nanoporous Materials. ChemSusChem, 2012, 5, 1694-1697.	3.6	112
88	Insights into the microwave-assisted preparation of supported iron oxide nanoparticles on silica-type mesoporous materials. Green Chemistry, 2012, 14, 393-402.	4.6	30
89	Versatile dual hydrogenation–oxidation nanocatalysts for the aqueous transformation of biomass-derived platform molecules. Green Chemistry, 2012, 14, 1434.	4.6	47
90	Tailor-made biopolymers from leather waste valorisation. Green Chemistry, 2012, 14, 308.	4.6	34

Alina Mariana Balu

#	Article	IF	CITATIONS
91	Catalytic applications of mesoporous silica-based materials. Catalysis, 2012, , 253-280.	0.6	35
92	High alkylation activities of ball-milled synthesized low-load supported iron oxide nanoparticles on mesoporous aluminosilicates. Catalysis Today, 2012, 187, 65-69.	2.2	34
93	A versatile supported cobalt(ii) complex for heterogeneously catalysed processes: conventional vs. microwave irradiation protocols. Catalysis Science and Technology, 2011, 1, 1051.	2.1	11
94	Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules. Green Chemistry, 2011, 13, 2750.	4.6	89
95	Heteronuclear (Co–Ca, Co–Ba) 2,3-pyridinedicarboxylate complexes: synthesis, structure and physico-chemical properties. Dalton Transactions, 2011, 40, 463-471.	1.6	24
96	Valorisation of corncob residues to functionalised porous carbonaceous materials for the simultaneous esterification/transesterification of waste oils. Green Chemistry, 2011, 13, 3162.	4.6	74
97	Incorporation of chemical functionalities in the framework of mesoporous silica. Chemical Communications, 2011, 47, 9024.	2.2	119
98	Heterogeneously catalysed Strecker-type reactions using supported Co(ii) catalysts: microwave vs. conventional heating. Green Chemistry, 2011, 13, 3282.	4.6	35
99	A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem, 2011, 4, 1561-1565.	3.6	74
100	One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials. Organic and Biomolecular Chemistry, 2010, 8, 2845.	1.5	28
101	Biomaterials supported CdS nanocrystals. Materials Chemistry and Physics, 2010, 124, 52-54.	2.0	8
102	Towards Greener and More Efficient C-C and C-Heteroatom Couplings: Present and Future. Current Organic Synthesis, 2010, 7, 568-586.	0.7	18
103	Catalytically active self-assembled silica-based nanostructures containing supported nanoparticles. Green Chemistry, 2010, 12, 1995.	4.6	38
104	Fe/Al synergy in Fe2O3 nanoparticles supported on porous aluminosilicate materials: excelling activities in oxidation reactions. Chemical Communications, 2010, 46, 7825.	2.2	81
105	Tunable shapes in supported metal nanoparticles: From nanoflowers to nanocubes. Materials Chemistry and Physics, 2009, 117, 408-413.	2.0	13
106	Evidences of the in situ generation of highly active Lewis acid species on Zr-SBA-15. Applied Catalysis A: General, 2009, 371, 85-91.	2.2	54
107	Raman and ESR study of sol–gel materials from ZnO–TiO2–B2O3 system. Journal of Non-Crystalline Solids, 2009, 355, 2020-2022.	1.5	5
108	Para-hydrogen induced polarisation effects in liquid phase hydrogenations catalysed by supported metal nanoparticles. Dalton Transactions, 2009, , 5074.	1.6	73

#	Article	IF	CITATIONS
109	Physicoâ€Chemical Characterisation of Lipids from <i>Mytilus galloprovincialis</i> (L.) and <i>Rapana venosa</i> and their Healing Properties on Skin Burns. Lipids, 2008, 43, 829-41.	0.7	37
110	Microwave oxidation of alkenes and alcohols using highly active and stable mesoporous organotitanium silicates. Journal of Molecular Catalysis A, 2008, 293, 17-24.	4.8	23
111	Thermal analysis of some polynuclear coordination compounds. Journal of Thermal Analysis and Calorimetry, 2007, 88, 273-277.	2.0	5