AAEl-Midany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6640969/publications.pdf

Version: 2024-02-01

		567281	526287
60	851	15	27
papers	citations	h-index	g-index
60	60	60	226
60	60	60	926
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Size reduction of oil shale by attrition scrubbing and its effect on kerogen content. International Journal of Coal Preparation and Utilization, 2022, 42, 1664-1674.	2.1	5
2	Sensitivity of oil shale particle surface to the applied load in ball mill. International Journal of Coal Preparation and Utilization, 2022, 42, 3235-3248.	2.1	5
3	Role of Magnesium Salts in Coal De-Ashing by Flotation. Tenside, Surfactants, Detergents, 2021, 58, 51-58.	1.2	1
4	Bentonite Suspension Filtration and its Electro-Kinetics in the Presence of Additives. Tenside, Surfactants, Detergents, 2021, 58, 121-126.	1.2	3
5	Aspects of Talc Grinding in the Presence of Sodium Dodecyl Sulfonate. Journal of Surfactants and Detergents, 2021, 24, 801-807.	2.1	4
6	Removal of Major Phosphate Impurities by Flotation using DTAB Collector. Tenside, Surfactants, Detergents, 2021, 58, 230-236.	1.2	1
7	Justifying API Bentonite Rheological Behavior Through Its Forming Size Fractions. Mining, Metallurgy and Exploration, 2020, 37, 537-542.	0.8	2
8	Significance of conditioning pretreatment on enrichment and flotation of oil shale. Petroleum Science and Technology, 2020, 38, 713-722.	1.5	6
9	Ultrafine dry grinding of talc by planetary mill: effects of operating conditions. Obogashchenie Rud, 2020, , 21-25.	0.2	3
10	Upgrading of Oil Shale by Flotation Without Collector. Natural Resources Research, 2019, 28, 91-97.	4.7	8
11	Adsorption/Desorption Stability of TCMA-Modified Clay in Simulated Digestion Environment. International Journal of Environmental Research, 2019, 13, 879-885.	2.3	1
12	Preparation of superhydrophobic nanocalcite crystals using Box–Behnken design. Arabian Journal of Chemistry, 2019, 12, 1479-1486.	4.9	28
13	Effect of mineralogical composition and kerogen content on oil shale natural floatability. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1144-1152.	2.3	8
14	Valuation of chloride salts and their mixtures in coal flotation without collector. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2822-2831.	2.3	3
15	Role of calcium ions and their interaction with depressants in phosphate flotation. Chemical Papers, 2018, 72, 2641-2646.	2.2	9
16	Calcite–oleate–oxalate interaction in calcite flotation system. Particulate Science and Technology, 2017, 35, 699-703.	2.1	4
17	Enhancing Phosphate Grade Using Oleic Acid–Sodium Dodecyl Sulfate Mixtures. Chemical Engineering Communications, 2016, 203, 660-665.	2.6	7
18	Testing microwave dewatering as a solution for reducing clay disposal pond areas. Drying Technology, 2016, 34, 1957-1963.	3.1	0

#	Article	IF	Citations
19	Rice starch as a depressant in phosphate reverse flotation. Starch/Staerke, 2015, 67, 745-751.	2.1	3
20	Mineralogical, physical and chemical characteristics of historic brick-made structures. Mineralogy and Petrology, 2015, 109, 733-739.	1.1	6
21	Testing Oleicâ€6DS Mixture in the Absence/Presence Na ₂ SO ₄ as a Phosphate Depressant. Journal of Surfactants and Detergents, 2015, 18, 107-111.	2.1	2
22	Reducing sulfur and ash from coal using Bacillus subtilis and Paenibacillus polymyxa. Fuel, 2014, 115, 589-595.	6.4	36
23	Investigating sodium sulphate as a phosphate depressant in acidic media. Separation and Purification Technology, 2014, 124, 163-169.	7.9	23
24	Influence of bacteria–coal electrostatic interaction on coal cleaning. International Journal of Mineral Processing, 2014, 126, 30-34.	2.6	8
25	Low Solubility of Calcined Phosphate: Surface Area Reduction or Chemical Composition Change?. Particulate Science and Technology, 2014, 32, 80-85.	2.1	1
26	Development of artificial neural network models for supercritical fluid solvency in presence of co-solvents. Korean Journal of Chemical Engineering, 2014, 31, 1496-1504.	2.7	8
27	Column versus Mechanical Flotation for Calcareous Phosphate Fines Upgrading. Particulate Science and Technology, 2013, 31, 488-493.	2.1	21
28	Application of Bacillus subtilis for reducing ash and sulfur in coal. Environmental Earth Sciences, 2013, 70, 753-760.	2.7	16
29	Why do relatively coarse calcareous phosphate particles perform better in a static-bed calciner?. Powder Technology, 2013, 237, 180-185.	4.2	6
30	Adsorption of Paenibacillus polymyxa and its impact on coal cleaning. Fuel Processing Technology, 2013, 113, 52-56.	7.2	7
31	Bacterially induced phosphate–dolomite separation using amphoteric collector. Separation and Purification Technology, 2013, 102, 94-102.	7.9	17
32	Influence of Silica-Compatibilizer-Polypropylene Interactions on Mechanical Behaviour of Their Composite. Tenside, Surfactants, Detergents, 2012, 49, 288-294.	1,2	1
33	Effect of Celestite-Calcite Mineralogy on Their Separation by Attrition Scrubbing. Particulate Science and Technology, 2011, 29, 272-284.	2.1	6
34	Impact of the Adsorption of <i>Corynebacterium Diphtheriae Intermedius </i> Bacteria on Enhancing the Separation Selectivity of Dolomite and Apatite. Adsorption Science and Technology, 2011, 29, 47-58.	3.2	16
35	Influence of acrylic coatings on the interfacial, physical, and mechanical properties of stone-based monuments. Progress in Organic Coatings, 2011, 72, 592-598.	3.9	42
36	Does calcite content affect its separation from celestite by Falcon concentrator?. Powder Technology, 2011, 213, 41-47.	4.2	16

#	Article	IF	Citations
37	Modeling the PVA-coated dolomite floatability in acidic media. Powder Technology, 2011, 209, 25-28.	4.2	11
38	Characterization of silicone coating for archeological stone conservation. Surface and Interface Analysis, 2011, 43, 1182-1188.	1.8	11
39	Do Pseudomonas Aeruginosa Bacteria Affect the Selectivity of Dolomite/Francolite Separation?. Tenside, Surfactants, Detergents, 2011, 48, 439-444.	1.2	9
40	The effect of mineral surface nature on the mechanical properties of mineral-filled polypropylene composites. Polymer Bulletin, 2010, 64, 387-399.	3.3	20
41	Rationalization of the up-grading circuit of celestite for advanced applications. Powder Technology, 2010, 198, 233-239.	4.2	3
42	Silver nanostructures via cementation on copper: a comparison between experimental data and statistical design model. Surface and Interface Analysis, 2010, 42, 730-734.	1.8	6
43	Effect of synthesis conditions on the preparation of YIG powders via co-precipitation method. Journal of Magnetism and Magnetic Materials, 2009, 321, 3752-3757.	2.3	44
44	Bubbles growth and their stability in reactive flotation process. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1534-1538.	3.6	6
45	Effect of Oleate/Bacteria Interactions on Dolomite Separation from Phosphate Ore. Tenside, Surfactants, Detergents, 2009, 46, 340-345.	1.2	14
46	Heavy metal removal using SiO2-TiO2 binary oxide: experimental design approach. Adsorption, 2008, 14, 21-29.	3.0	42
47	Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technology, 2008, 185, 31-35.	4.2	96
48	An assessment of the carbothermic reduction of ilmenite ore by statistical design. Journal of Materials Processing Technology, 2008, 199, 279-286.	6.3	24
49	Effect of synthesis conditions on preparation of mesoporous titania-silica by a modified sol-gel technique using a cationic surfactant. Research on Chemical Intermediates, 2008, 34, 629-639.	2.7	8
50	Mechanochemical–hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Materials Chemistry and Physics, 2008, 112, 202-207.	4.0	50
51	Adsorption mechanism of amphoteric collector on silica and hematite. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2008, 117, 153-156.	0.6	3
52	Modelling of bubble formation in reactive flotation Part 1 – Active site approach. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2008, 117, 185-189.	0.6	5
53	Optimisation of bioflotation of carbonaceous impurities from phosphate ore. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2008, 117, 38-42.	0.6	3
54	Application of amphoteric collector for dolomite separation by statistically designed experiments. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2007, 116, 72-76.	0.6	7

AAEL-MIDANY

#	Article	IF	CITATION
55	Statistical optimisation of some parameters affecting flocculation of Egyptian iron ore. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2007, 116, 239-244.	0.6	5
56	Effect of synthesis conditions on preparation of nickel metal nanopowders via hydrothermal reduction technique. Powder Technology, 2007, 171, 63-68.	4.2	48
57	Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Materials Letters, 2005, 59, 1924-1928.	2.6	99
58	How does the SDS addition in talc grinding affect its floatability? Particulate Science and Technology, 0 , 1 - 7 .	2.1	3
59	Nano-CaCO3 for Repair of Historic Joint Mortar. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , $1\cdot$	1.9	1
60	Effect of Corn Oil Addition to TCMA-Modified Clay on ZEN Removal. Mining, Metallurgy and Exploration, 0 , 1 .	0.8	0