Hans-Jürgen Kreienkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6640891/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders. Scientific Reports, 2022, 12, 902.	1.6	9
2	Variant-specific effects define the phenotypic spectrum of HNRNPH2-associated neurodevelopmental disorders in males. Human Genetics, 2022, 141, 257-272.	1.8	8
3	Missense mutations in CASK, coding for the calciumâ€/calmodulinâ€dependent serine protein kinase, interfere with neurexin binding and neurexinâ€induced oligomerization. Journal of Neurochemistry, 2021, 157, 1331-1350.	2.1	14
4	Genotype–phenotype correlations and novel molecular insights into the DHX30-associated neurodevelopmental disorders. Genome Medicine, 2021, 13, 90.	3.6	16
5	Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. ELife, 2021, 10, .	2.8	14
6	Functional analysis of CASK transcript variants expressed in human brain. PLoS ONE, 2021, 16, e0253223.	1.1	8
7	The Golgi-Associated PDZ Domain Protein Gopc/PIST Is Required for Synaptic Targeting of mGluR5. Molecular Neurobiology, 2021, 58, 5618-5634.	1.9	4
8	SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling. Current Biology, 2021, 31, 4956-4970.e9.	1.8	14
9	Germline AGO2 mutations impair RNA interference and human neurological development. Nature Communications, 2020, 11, 5797.	5.8	43
10	Targeting of \hat{l}^{\prime} -catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Molecular Autism, 2020, 11, 85.	2.6	12
11	Characterization of agonist-dependent somatostatin receptor subtype 2 trafficking in neuroendocrine cells. Endocrine, 2020, 69, 655-669.	1.1	1
12	Truncating mutations in SHANK3 associated with global developmental delay interfere with nuclear β atenin signaling. Journal of Neurochemistry, 2020, 155, 250-263.	2.1	16
13	International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacological Reviews, 2018, 70, 763-835.	7.1	163
14	Functional Relevance of Missense Mutations Affecting the N-Terminal Part of Shank3 Found in Autistic Patients. Frontiers in Molecular Neuroscience, 2018, 11, 268.	1.4	15
15	De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder. American Journal of Human Genetics, 2017, 101, 716-724.	2.6	66
16	Severe learning deficits of <scp>IRS</scp> p53 mutant mice are caused by altered <scp>NMDA</scp> receptorâ€dependent signal transduction. Journal of Neurochemistry, 2016, 136, 752-763.	2.1	25
17	Heterodimerization with the β 1 subunit directs the α 2 subunit of nitric oxide-sensitive guanylyl cyclase to calcium-insensitive cell-cell contacts in HEK293 cells: Interaction with Lin7a. Biochemical Pharmacology, 2016, 122, 23-32.	2.0	3
18	The Golgi-associated PDZ Domain Protein PIST/GOPC Stabilizes the β1-Adrenergic Receptor in Intracellular Compartments after Internalization. Journal of Biological Chemistry, 2015, 290, 6120-6129.	1.6	32

#	Article	IF	CITATIONS
19	A Non-Canonical Initiation Site Is Required for Efficient Translation of the Dendritically Localized Shank1 mRNA. PLoS ONE, 2014, 9, e88518.	1.1	20
20	Subcellular Sorting of the G-Protein Coupled Mouse Somatostatin Receptor 5 by a Network of PDZ-Domain Containing Proteins. PLoS ONE, 2014, 9, e88529.	1.1	29
21	The <scp>RNA</scp> â€binding protein <scp>MARTA</scp> 2 regulates dendritic targeting of <scp>MAP</scp> 2 <scp>mRNA</scp> s in rat neurons. Journal of Neurochemistry, 2013, 124, 670-684.	2.1	7
22	SHANK3 Gene Mutations Associated with Autism Facilitate Ligand Binding to the Shank3 Ankyrin Repeat Region. Journal of Biological Chemistry, 2013, 288, 26697-26708.	1.6	52
23	Dendritic mRNA Targeting and Translation. Advances in Experimental Medicine and Biology, 2012, 970, 285-305.	0.8	48
24	Regional and subcellular distribution of the receptorâ€ŧargeting protein PIST in the rat central nervous system. Journal of Comparative Neurology, 2012, 520, 889-913.	0.9	11
25	The Role of the Postsynaptic Density in the Pathology of the Fragile X Syndrome. Results and Problems in Cell Differentiation, 2012, 54, 61-80.	0.2	11
26	Somatostatin receptor 5 is palmitoylated by the interacting ZDHHC5 palmitoyltransferase. FEBS Letters, 2011, 585, 2665-2670.	1.3	27
27	Dendritic mRNA Targeting of Jacob and N-Methyl-d-aspartate-induced Nuclear Translocation after Calpain-mediated Proteolysis. Journal of Biological Chemistry, 2009, 284, 25431-25440.	1.6	25
28	The Insulin Receptor Substrate of 53 kDa (IRSp53) Limits Hippocampal Synaptic Plasticity. Journal of Biological Chemistry, 2009, 284, 9225-9236.	1.6	78
29	Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF). PLoS Biology, 2009, 7, e1000138.	2.6	93
30	Interaction of the human somatostatin receptor 3 with the multiple PDZ domain protein MUPP1 enables somatostatin to control permeability of epithelial tight junctions. FEBS Letters, 2009, 583, 49-54.	1.3	31
31	Shank1 mRNA: Dendritic Transport by Kinesin and Translational Control by the 5′Untranslated Region. Traffic, 2009, 10, 844-857.	1.3	42
32	Fragile X Mental Retardation Protein Regulates the Levels of Scaffold Proteins and Glutamate Receptors in Postsynaptic Densities. Journal of Biological Chemistry, 2009, 284, 25479-25487.	1.6	132
33	Interaction of brain somatostatin receptors with the PDZ domains of PSDâ€95. FEBS Letters, 2007, 581, 5173-5177.	1.3	17
34	Interactions with PDZ Domain Proteins PIST/GOPC and PDZK1 Regulate Intracellular Sorting of the Somatostatin Receptor Subtype 5. Journal of Biological Chemistry, 2005, 280, 32419-32425.	1.6	65
35	Postsynaptic Shank Antagonizes Dendrite Branching Induced by the Leucine-Rich Repeat Protein Densin-180. Journal of Neuroscience, 2005, 25, 479-487.	1.7	83
36	The PDZ/coiled-coil domain containing protein PIST modulates insulin secretion in MIN6 insulinoma cells by interacting with somatostatin receptor subtype 5. FEBS Letters, 2005, 579, 6305-6310.	1.3	12

Hans-Jürgen Kreienkamp

#	Article	IF	CITATIONS
37	Characterization of Staufen 1 ribonucleoprotein complexes. Biochemical Journal, 2004, 384, 239-246.	1.7	65
38	Role of Amphiphysin II in Somatostatin Receptor Trafficking in Neuroendocrine Cells. Journal of Biological Chemistry, 2004, 279, 8029-8037.	1.6	17
39	Differential β-Arrestin Trafficking and Endosomal Sorting of Somatostatin Receptor Subtypes. Journal of Biological Chemistry, 2004, 279, 21374-21382.	1.6	150
40	Insulin receptor substrate of 53kDa links postsynaptic shank to PSD-95. Journal of Neurochemistry, 2004, 90, 659-665.	2.1	79
41	Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3′ untranslated region of Shank1 mRNA. Molecular and Cellular Neurosciences, 2004, 26, 182-190.	1.0	128
42	The Insulin Receptor Substrate IRSp53 Links Postsynaptic shank1 to the Small G-Protein cdc42. Molecular and Cellular Neurosciences, 2002, 21, 575-583.	1.0	84
43	Synaptic Scaffolding Proteins in Rat Brain. Journal of Biological Chemistry, 2001, 276, 40104-40112.	1.6	130
44	Somatostatin Receptor Interacting Protein Defines a Novel Family of Multidomain Proteins Present in Human and Rodent Brain. Journal of Biological Chemistry, 1999, 274, 32997-33001.	1.6	129
45	Endocytosis of the Rat Somatostatin Receptors: Subtype Discrimination, Ligand Specificity, and Delineation of Carboxy-Terminal Positive and Negative Sequence Motifs. DNA and Cell Biology, 1997, 16, 111-119.	0.9	72