Ezio Iacocca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6640162/publications.pdf Version: 2024-02-01

Εγιο Ιλέοςςλ

#	Article	IF	CITATIONS
1	Spin Torque–Generated Magnetic Droplet Solitons. Science, 2013, 339, 1295-1298.	6.0	237
2	Long-range mutual synchronization of spin Hall nano-oscillators. Nature Physics, 2017, 13, 292-299.	6.5	221
3	Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics, 2022, 58, 1-72.	1.2	179
4	Dynamically stabilized magnetic skyrmions. Nature Communications, 2015, 6, 8193.	5.8	173
5	Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nature Nanotechnology, 2016, 11, 280-286.	15.6	119
6	Spin-Wave-Mode Coexistence on the Nanoscale: A Consequence of the Oersted-Field-Induced Asymmetric Energy Landscape. Physical Review Letters, 2013, 110, 257202.	2.9	98
7	CoFeB-Based Spin Hall Nano-Oscillators. IEEE Magnetics Letters, 2014, 5, 1-4.	0.6	71
8	Dynamic response of an artificial square spin ice. Physical Review B, 2016, 93, .	1.1	71
9	Reconfigurable wave band structure of an artificial square ice. Physical Review B, 2016, 93, .	1.1	64
10	Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys. Nature Communications, 2019, 10, 1756.	5.8	54
11	Confined Dissipative Droplet Solitons in Spin-Valve Nanowires with Perpendicular Magnetic Anisotropy. Physical Review Letters, 2014, 112, 047201.	2.9	53
12	Dynamics of reconfigurable artificial spin ice: Toward magnonic functional materials. APL Materials, 2020, 8, .	2.2	52
13	Spin transfer torque generated magnetic droplet solitons (invited). Journal of Applied Physics, 2014, 115, .	1.1	47
14	Magnetic droplet nucleation boundary in orthogonal spin-torque nano-oscillators. Nature Communications, 2016, 7, 11209.	5.8	46
15	Oscillatory transient regime in the forced dynamics of a nonlinear auto oscillator. Physical Review B, 2010, 82, .	1.1	42
16	Frequency modulation of spin torque oscillator pairs. Applied Physics Letters, 2011, 98, 192501.	1.5	41
17	Magnetic droplet solitons in orthogonal nano-contact spin torque oscillators. Physica B: Condensed Matter, 2014, 435, 84-87.	1.3	35
18	Tailoring Spin-Wave Channels in a Reconfigurable Artificial Spin Ice. Physical Review Applied, 2020, 13, .	1.5	34

ΕΖΙΟ ΙΑCOCCA

#	Article	IF	CITATIONS
19	Breaking of Galilean Invariance in the Hydrodynamic Formulation of Ferromagnetic Thin Films. Physical Review Letters, 2017, 118, 017203.	2.9	33
20	Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study. Physical Review B, 2015, 92, .	1.1	32
21	Generation linewidth of mode-hopping spin torque oscillators. Physical Review B, 2014, 89, .	1.1	28
22	Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field. Applied Physics Letters, 2014, 104, 092405.	1.5	28
23	Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction. Physical Review Applied, 2017, 8, .	1.5	24
24	Recent Advances in Nanocontact Spin-Torque Oscillators. IEEE Transactions on Magnetics, 2014, 50, 1-7.	1.2	21
25	Mode-coupling mechanisms in nanocontact spin-torque oscillators. Physical Review B, 2015, 91, .	1.1	21
26	Deterministic drift instability and stochastic thermal perturbations of magnetic dissipative droplet solitons. Physical Review B, 2016, 93, .	1.1	21
27	Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator. Applied Physics Letters, 2014, 105, 132404.	1.5	20
28	Parametric excitation in a magnetic tunnel junction-based spin torque oscillator. Applied Physics Letters, 2014, 104, .	1.5	18
29	Symmetry-broken dissipative exchange flows in thin-film ferromagnets with in-plane anisotropy. Physical Review B, 2017, 96, .	1.1	18
30	Decoherence, Mode Hopping, and Mode Coupling in Spin Torque Oscillators. IEEE Transactions on Magnetics, 2013, 49, 4398-4404.	1.2	17
31	A high-speed single sideband generator using a magnetic tunnel junction spin torque nano-oscillator. Scientific Reports, 2017, 7, 13422.	1.6	17
32	Domain wall dynamics in two-dimensional van der Waals ferromagnets. Applied Physics Reviews, 2021, 8, .	5.5	16
33	Analytical investigation of modulated spin-torque oscillators in the framework of coupled differential equations with variable coefficients. Physical Review B, 2012, 85, .	1.1	15
34	Comprehensive and Macrospin-Based Magnetic Tunnel Junction Spin Torque Oscillator Model-Part I: Analytical Model of the MTJ STO. IEEE Transactions on Electron Devices, 2015, 62, 1037-1044.	1.6	15
35	Destabilization of serially connected spin-torque oscillators via non-Adlerian dynamics. Journal of Applied Physics, 2011, 110, 103910.	1.1	14
36	Comprehensive and Macrospin-Based Magnetic Tunnel Junction Spin Torque Oscillator Model- Part II: Verilog-A Model Implementation. IEEE Transactions on Electron Devices, 2015, 62, 1045-1051.	1.6	11

ΕΖΙΟ ΙΑCOCCA

#	Article	IF	CITATIONS
37	Homodyne-detected ferromagnetic resonance of in-plane magnetized nanocontacts: Composite spin-wave resonances and their excitation mechanism. Physical Review B, 2016, 93, .	1.1	10
38	Vortex-antivortex proliferation from an obstacle in thin film ferromagnets. Physical Review B, 2017, 95, .	1.1	10
39	Hydrodynamic description of long-distance spin transport through noncollinear magnetization states: Role of dispersion, nonlinearity, and damping. Physical Review B, 2019, 99, .	1.1	10
40	Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles. Science Advances, 2022, 8, eabn0523.	4.7	10
41	Perspectives on spin hydrodynamics in ferromagnetic materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125858.	0.9	8
42	Modulation-mediated unlocking of a parametrically phase-locked spin torque oscillator. Applied Physics Letters, 2014, 105, 252404.	1.5	7
43	Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators. Physical Review Applied, 2017, 8, .	1.5	7
44	Anisotropic MagnetoMemristance. Communications Physics, 2022, 5, .	2.0	7
45	Magnonic Band Structure Established by Chiral Spin-Density Waves in Thin-Film Ferromagnets. IEEE Magnetics Letters, 2019, 10, 1-5.	0.6	6
46	Resonant excitation of injection-locked spin-torque oscillators. Physical Review B, 2013, 87, .	1.1	5
47	Effect of Excitation Fatigue on the Synchronization of Multiple Nanocontact Spin-Torque Oscillators. IEEE Magnetics Letters, 2014, 5, 1-4.	0.6	5
48	Controllable vortex shedding from dissipative exchange flows in ferromagnetic channels. Physical Review B, 2020, 102, .	1.1	4
49	Transverse instabilities of stripe domains in magnetic thin films with perpendicular magnetic anisotropy. Physical Review B, 2018, 97, .	1.1	2
50	Spin-piston problem for a ferromagnetic thin film: Shock waves and solitons. Physical Review B, 2022, 105, .	1.1	2
51	Spin-Injection-Generated Shock Waves and Solitons in a Ferromagnetic Thin Film. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	1