Samuel Forest

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6639644/samuel-forest-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

242 8,917 51 86 g-index

260 9,962 3 6.59 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
242	Multiscale analysis of crystalline defect formation in rapid solidification of pure aluminium and aluminium-copper alloys <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022 , 380, 20200319	3	2
241	Micromorphic crystal plasticity approach to damage regularization and size effects in martensitic steels. <i>International Journal of Plasticity</i> , 2022 , 151, 103187	7.6	2
240	A general boundary layer corrector for the asymptotic homogenization of elastic linear composite structures. <i>Composite Structures</i> , 2022 , 285, 115091	5.3	1
239	Influence of grain size on the high-temperature creep behaviour of M5Framatome1 zirconium alloy under vacuum. <i>Journal of Nuclear Materials</i> , 2022 , 560, 153503	3.3	1
238	Crystal plasticity and damage at cracks and notches in nickel-base single-crystal superalloys 2022 , 457-4	169	
237	Adiabatic shear banding in FCC metallic single and poly-crystals using a micromorphic crystal plasticity approach. <i>Mechanics of Materials</i> , 2022 , 104288	3.3	
236	Modeling size effects in microwire torsion: A comparison between a Lagrange multiplier-based and a CurlFp gradient crystal plasticity model. <i>European Journal of Mechanics, A/Solids</i> , 2022 , 94, 104550	3.7	O
235	Strain localization analysis in materials containing randomly distributed voids: Competition between extension and shear failure modes. <i>Journal of the Mechanics and Physics of Solids</i> , 2022 , 10493	3 ⁵	O
234	Dislocation density in cellular rapid solidification using phase field modeling and crystal plasticity. <i>International Journal of Plasticity</i> , 2021 , 103139	7.6	2
233	A finite element implementation of the stress gradient theory. <i>Meccanica</i> , 2021 , 56, 1109-1128	2.1	2
232	Experimental and Computational Approach to Fatigue Behavior of Polycrystalline Tantalum. <i>Metals</i> , 2021 , 11, 416	2.3	1
231	FFT-based simulations of slip and kink bands formation in 3D polycrystals: Influence of strain gradient crystal plasticity. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 149, 104295	5	14
230	Phase field model for the martensitic transformation: comparison of the Voigt/Taylor and Khachaturyan approach. <i>Continuum Mechanics and Thermodynamics</i> , 2021 , 33, 2075-2094	3.5	
229	Finite element simulation of the PortevinLe Chatelier effect in highly reinforced metal matrix composites. <i>Philosophical Magazine</i> , 2021 , 101, 1471-1489	1.6	1
228	Loss of ellipticity analysis in non-smooth plasticity. <i>International Journal of Solids and Structures</i> , 2021 , 222-223, 111010	3.1	
227	Effect of Lders and Portevinde Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations. <i>International Journal of Plasticity</i> , 2021 , 136, 102880	7.6	10
226	Ductile fracture of materials with randomly distributed voids. <i>International Journal of Fracture</i> , 2021 , 230, 193	2.3	3

(2020-2021)

Splitting of dissolving precipitates during plastic shear: A phase field study. <i>Comptes Rendus Physique</i> , 2021 , 22, 1-18	1.4	1
A strain gradient plasticity model of porous single crystal ductile fracture. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 156, 104606	5	7
Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects. <i>Continuum Mechanics and Thermodynamics</i> , 2021 , 33, 1223-1245	3.5	2
Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 2019010	6 <i>9</i>	5
Hyper-reduced direct numerical simulation of voids in welded joints via image-based modeling. <i>International Journal for Numerical Methods in Engineering</i> , 2020 , 121, 2581-2599	2.4	3
Discrete and continuum modelling of size effects in architectured unstable metamaterials. <i>Continuum Mechanics and Thermodynamics</i> , 2020 , 32, 1629-1645	3.5	O
Kinematics and constitutive relations in the stress-gradient theory: interpretation by homogenization. <i>International Journal of Solids and Structures</i> , 2020 , 193-194, 90-97	3.1	8
A micromorphic crystal plasticity model with the gradient-enhanced incremental hardening law. <i>International Journal of Plasticity</i> , 2020 , 128, 102655	7.6	11
Strain Gradient Elasticity From Capillarity to the Mechanics of Nano-objects. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2020 , 37-70	0.6	3
A general and efficient multistart algorithm for the detection of loss of ellipticity in elastoplastic structures. <i>International Journal for Numerical Methods in Engineering</i> , 2020 , 121, 842-866	2.4	3
Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: Global and local analyses. <i>International Journal of Plasticity</i> , 2020 , 126, 102619	7.6	26
A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes. Journal of Manufacturing and Materials Processing, 2020 , 4, 87	2.2	2
Thermomechanics of Cosserat medium: modeling adiabatic shear bands in metals. <i>Continuum Mechanics and Thermodynamics</i> , 2020 , 1	3.5	6
Analysis of material instability of a smooth elastic-inelastic transition model. <i>International Journal of Solids and Structures</i> , 2020 , 193-194, 39-53	3.1	O
Propagating material instabilities in planar architectured materials. <i>International Journal of Solids and Structures</i> , 2020 , 202, 532-551	3.1	5
Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2020 , 372, 113426	5.7	10
Microstructure evolution in deformed polycrystals predicted by a diffuse interface Cosserat approach. <i>Advanced Modeling and Simulation in Engineering Sciences</i> , 2020 , 7,	2.7	1
Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. <i>Mathematics and Mechanics of Solids</i> , 2020 , 25, 1429-1449	2.3	17
	A strain gradient plasticity model of porous single crystal ductile fracture. Journal of the Mechanics and Physics of Solids, 2021, 156, 104606 Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects. Continuum Mechanics and Thermodynamics, 2021, 33, 1223-1245 Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 201901. Hyper-reduced direct numerical simulation of voids in welded joints via image-based modeling. International Journal for Numerical Methods in Engineering, 2020, 121, 2581-2599 Discrete and continuum modelling of size effects in architectured unstable metamaterials. Continuum Mechanics and Thermodynamics, 2020, 32, 1629-1645 Kinematics and constitutive relations in the stress-gradient theory: interpretation by homogenization. International Journal of Solids and Structures, 2020, 193-194, 90-97 A micromorphic crystal plasticity model with the gradient-enhanced incremental hardening law. International Journal of Plasticity, 2020, 128, 102655 Strain Gradient Elasticity From Capillarity to the Mechanics of Nano-objects. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2020, 37-70 A general and efficient multistart algorithm for the detection of loss of ellipticity in elastoplastic structures. International Journal of Plasticity, 2020, 126, 102619 A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes. Journal of Manufacturing and Materials Processing, 2020, 4, 87 Thermomechanics of Cosserat medium: modeling adiabatic shear bands in metals. Continuum Mechanics and Thermodynamics, 2020, 193-194, 39-53 Propagating material instability of a smooth elastic-inelastic transition model. International Journal of Solids and Structures, 2020, 193-194, 39-53 Propagating material instability in planar architectured materials. International Journal of Solids and Structures	A strain gradient plasticity model of porous single crystal ductile fracture. Journal of the Mechanics and Physics of Solids, 2021, 156, 104606 Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects. Continuum Mechanics and Thermodynamics, 2021, 33, 1223-1245 Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Philosophical Transactions Series A. Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190169 Hyper-reduced direct numerical simulation of voids in welded joints via image-based modeling. International Journal for Numerical Methods in Engineering, 2020, 121, 2581-2599 Discrete and continuum modelling of size effects in architectured unstable metamaterials. Continuum Mechanics and Thermodynamics, 2020, 32, 1629-1645 Kinematics and constitutive relations in the stress-gradient theory: interpretation by homogenization. International Journal of Solids and Structures, 2020, 193-194, 90-97 A micromorphic crystal plasticity model with the gradient-enhanced incremental hardening law. International Journal of Plasticity, 2020, 128, 102655 Strain Gradient Elasticity From Capillarity to the Mechanics of Nano-objects. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2020, 37-70 A general and efficient multistart algorithm for the detection of loss of ellipticity in elastoplastic structures. International Journal for Numerical Methods in Engineering, 2020, 121, 842-866 Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: Global and local analyses. International Journal of Plasticity, 2020, 126, 1026-103. A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes. Journal of Manufacturing and Materials Processing, 2020, 4, 87 Thermomechanics of Cosserat medium: modeling adiabatic shear bands in metals. Continuum Mechanics and Thermodynamics, 2020, 193-194, 39-53 32 Thermomechanics of Cosserat med

207	Efficient simulation of single and poly-crystal plasticity based on the pencil glide mechanism. <i>Comptes Rendus - Mecanique</i> , 2020 , 348, 847-876	0.3	1
206	Local Ratcheting Phenomena in the Cyclic Behavior of Polycrystalline Tantalum. <i>Jom</i> , 2019 , 71, 2586-2	59 <u>9</u> 1	7
205	Intragranular localization induced by softening crystal plasticity: Analysis of slip and kink bands localization modes from high resolution FFT-simulations results. <i>Acta Materialia</i> , 2019 , 175, 262-275	8.4	23
204	Multiscale modeling of the elasto-plastic behavior of architectured and nanostructured Cu-Nb composite wires and comparison with neutron diffraction experiments. <i>International Journal of Plasticity</i> , 2019 , 122, 1-30	7.6	13
203	Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials. <i>European Journal of Mechanics, A/Solids</i> , 2019 , 77, 103768	3.7	13
202	Oxidation-assisted Cracking 2019 , 339-358		
201	Computational Homogenization of Architectured Materials. <i>Springer Series in Materials Science</i> , 2019 , 89-139	0.9	3
200	Systematic design of tetra-petals auxetic structures with stiffness constraint. <i>Materials and Design</i> , 2019 , 170, 107669	8.1	21
199	A Cosseratphase-field theory of crystal plasticity and grain boundary migration at finite deformation. <i>Continuum Mechanics and Thermodynamics</i> , 2019 , 31, 1109-1141	3.5	8
198	Micromorphic Approach to Gradient Plasticity and Damage 2019 , 499-546		3
197	Micropolar Crystal Plasticity 2019 , 595-642		
196	Micromorphic Crystal Plasticity 2019 , 643-686		2
195	Generalized Continua and Phase-Field Models: Application to Crystal Plasticity. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2019 , 299-344	0.6	1
195 194		0.6	8
	Centre for Mechanical Sciences, Courses and Lectures, 2019, 299-344 Portevin-Le Chatelier effect triggered by complex loading paths in an Alfu aluminium alloy.		
194	Centre for Mechanical Sciences, Courses and Lectures, 2019, 299-344 Portevin-Le Chatelier effect triggered by complex loading paths in an Alfu aluminium alloy. Philosophical Magazine, 2019, 99, 659-678 Use and Abuse of the Method of Virtual Power in Generalized Continuum Mechanics and	1.6	
194	Centre for Mechanical Sciences, Courses and Lectures, 2019, 299-344 Portevin-Le Chatelier effect triggered by complex loading paths in an Alūu aluminium alloy. Philosophical Magazine, 2019, 99, 659-678 Use and Abuse of the Method of Virtual Power in Generalized Continuum Mechanics and Thermodynamics. Advanced Structured Materials, 2018, 311-334 A Cosserat crystal plasticity and phase field theory for grain boundary migration. Journal of the	0.6	8

189 Micromorphic Approach to Gradient Plasticity and Damage 2018, 1-47

188	Micropolar Crystal Plasticity 2018 , 1-47		2
187	Micromorphic Crystal Plasticity 2018 , 1-44		3
186	Cosserat crystal plasticity with dislocation-driven grain boundary migration. <i>Journal of Micromechanics and Molecular Physics</i> , 2018 , 03, 1840009	1.4	4
185	Incipient Bulk Polycrystal Plasticity Observed by Synchrotron In-Situ Topotomography. <i>Materials</i> , 2018 , 11,	3.5	12
184	Simulation of Short Fatigue Crack Propagation in a 3D Experimental Microstructure . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600721	3.5	19
183	Void growth and coalescence in triaxial stress fields in irradiated FCC single crystals. <i>Journal of Nuclear Materials</i> , 2017 , 492, 157-170	3.3	13
182	Hyper-reduction of generalized continua. <i>Computational Mechanics</i> , 2017 , 59, 753-778	4	2
181	Interaction of the PortevinLe Chatelier phenomenon with ductile fracture of a thin aluminum CT specimen: experiments and simulations. <i>International Journal of Fracture</i> , 2017 , 206, 95-122	2.3	10
180	Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2017 , 323, 250-271	5.7	83
179	Multiscale modeling of the elastic behavior of architectured and nanostructured CuNb composite wires. <i>International Journal of Solids and Structures</i> , 2017 , 121, 148-162	3.1	17
178	The Micromorphic Approach to Generalized Heat Equations. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2017 , 42,	3.8	18
177	A constitutive model accounting for strain ageing effects on work-hardening. Application to a CMn steel. <i>Comptes Rendus - Mecanique</i> , 2017 , 345, 908-921	2.1	9
176	Multiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured Cu-Nb composite wires and experimental comparison. <i>Acta Materialia</i> , 2017 , 141, 131-141	8.4	15
175	Effects of inclusions on the very high cycle fatigue behaviour of steels. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2017 , 40, 1694-1707	3	26
174	Experimental and numerical analysis of the Lders phenomenon in simple shear. <i>International Journal of Solids and Structures</i> , 2017 , 106-107, 305-314	3.1	19
173	A rate-independent crystal plasticity model with a smooth elasticplastic transition and no slip indeterminacy. <i>European Journal of Mechanics, A/Solids</i> , 2016 , 55, 278-288	3.7	20
172	Second strain gradient elasticity of nano-objects. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 97, 92-124	5	81

171	3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing. <i>International Journal of Fatigue</i> , 2016 , 82, 238-246	5	48
170	Numerical investigation of dynamic strain ageing and slant ductile fracture in a notched specimen and comparison with synchrotron tomography 3D-DVC. <i>Procedia Structural Integrity</i> , 2016 , 2, 3385-3392	21	4
169	Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2016 , 472, 20150755	2.4	61
168	Crystal plasticity simulation of strain aging phenomena in £itanium at room temperature. <i>International Journal of Plasticity</i> , 2016 , 85, 1-33	7.6	32
167	Coupling Diffraction Contrast Tomography with the Finite Element Method . <i>Advanced Engineering Materials</i> , 2016 , 18, 903-912	3.5	18
166	Phase field approaches of bone remodeling based on TIP. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2016 , 41,	3.8	7
165	Stress Gradient Elasticity Theory: Existence and Uniqueness of Solution. <i>Journal of Elasticity</i> , 2016 , 123, 179-201	1.5	20
164	Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel. <i>Archive of Applied Mechanics</i> , 2016 , 86, 21-38	2.2	10
163	Homogenization of viscoplastic constitutive laws within a phase field approach. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 88, 291-319	5	27
162	Nonlocal constitutive equations of elasto-visco-plasticity coupled with damage and temperature. <i>MATEC Web of Conferences</i> , 2016 , 80, 01002	0.3	
161	An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations. <i>International Journal of Plasticity</i> , 2016 , 84, 58-87	7.6	50
160	Microdamage modelling of crack initiation and propagation in FCC single crystals under complex loading conditions. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2016 , 312, 468-491	5.7	20
159	Influence of static strain aging on the cleavage fracture of a CMn steel. <i>Engineering Fracture Mechanics</i> , 2015 , 141, 95-110	4.2	2
158	Computational homogenisation of periodic cellular materials: Application to structural modelling. <i>International Journal of Mechanical Sciences</i> , 2015 , 93, 240-255	5.5	30
157	Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. <i>Journal of the Mechanics and Physics of Solids</i> , 2015 , 79, 1-20	5	69
156	Size-dependent energy in crystal plasticity and continuum dislocation models. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20140868	2.4	17
155	Three-dimensional characterization of fatigue-relevant intermetallic particles in high-strength aluminium alloys using synchrotron X-ray nanotomography. <i>Philosophical Magazine</i> , 2015 , 95, 2731-2746	6 ^{1.6}	9
154	Strain gradient plasticity modeling and finite element simulation of Laers band formation and propagation. Continuum Mechanics and Thermodynamics, 2015, 27, 83-104	3.5	53

(2013-2015)

153	Field theory and diffusion creep predictions in polycrystalline aggregates. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2015 , 23, 055006	2	13
152	Modlsation multi-lhelle du comportement lectrique de nano-composites Cu-Nb. <i>Materiaux Et Techniques</i> , 2015 , 103, 309	0.6	5
151	Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method. <i>Meccanica</i> , 2014 , 49, 2699-2717	2.1	18
150	Investigation and modeling of the anomalous yield point phenomenon in pure tantalum. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 615, 283-295	5.3	16
149	A fully coupled diffusional-mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on equilibrium. <i>Archive of Applied Mechanics</i> , 2014 , 84, 1647-1664	2.2	27
148	Influence of Particles on Short Fatigue Crack Initiation in 2050-T8 and 7050-T74. <i>Materials Science Forum</i> , 2014 , 794-796, 296-301	0.4	2
147	Crystal plasticity finite element simulation of crack growth in single crystals. <i>Computational Materials Science</i> , 2014 , 94, 191-197	3.2	24
146	Coupled glide-climb diffusion-enhanced crystal plasticity. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 70, 136-153	5	41
145	Influence of intermetallic particles on short fatigue crack initiation in AA2050-T8 and AA7050-T7451. <i>MATEC Web of Conferences</i> , 2014 , 12, 07003	0.3	Ο
144	On the creep deformation of nickel foams under compression. <i>Comptes Rendus Physique</i> , 2014 , 15, 705	5-7:1.8	8
143	Towards gigantic RVE sizes for 3D stochastic fibrous networks. <i>International Journal of Solids and Structures</i> , 2014 , 51, 359-376	3.1	67
142	The thermodynamics of gradient elastoplasticity. <i>Continuum Mechanics and Thermodynamics</i> , 2014 , 26, 269-286	3.5	28
141	Micromorphic approach to crystal plasticity and phase transformation. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2014 , 131-198	0.6	9
140	Gianpietro Del Piero: a scientist on the edge between engineering sciences and functional analysis. <i>Continuum Mechanics and Thermodynamics</i> , 2013 , 25, 109-110	3.5	
139	Computational homogenization of porous materials of Green type. <i>Computational Mechanics</i> , 2013 , 52, 121-134	4	33
138	Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy. <i>International Journal of Plasticity</i> , 2013 , 51, 200-217	7.6	53
137	Inspection of free energy functions in gradient crystal plasticity. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2013 , 29, 763-772	2	39
136	A yield function for single crystals containing voids. <i>International Journal of Solids and Structures</i> , 2013 , 50, 2115-2131	3.1	77

135	Effective elastic properties of auxetic microstructures: anisotropy and structural applications. <i>International Journal of Mechanics and Materials in Design</i> , 2013 , 9, 21-33	2.5	91
134	Questioning size effects as predicted by strain gradient plasticity. <i>Journal of the Mechanical Behavior of Materials</i> , 2013 , 22, 101-110	1.9	14
133	Micromorphic modelling of grain size effects in metal polycrystals. <i>GAMM Mitteilungen</i> , 2013 , 36, 186-2	2 02 8	17
132	Multiscale creep characterization and modeling of a zirconia-rich fused-cast refractory. <i>Philosophical Magazine</i> , 2013 , 93, 2701-2728	1.6	1
131	Micromorphic Media. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, 249	9-306	18
130	Combining X-Ray Microtomography with the Finite Elements Method to Study Damage and Cracking in Stuctural Materials 2013 , 1163-1173		
129	Effect of secondary orientation on notch-tip plasticity in superalloy single crystals. <i>International Journal of Plasticity</i> , 2012 , 28, 102-123	7.6	60
128	Computational homogenization of elasto-plastic porous metals. <i>International Journal of Plasticity</i> , 2012 , 29, 102-119	7.6	125
127	Modelling the effects of various contents of fillers on the relaxation rate of elastomers. <i>Materials & Design</i> , 2012 , 33, 75-82		10
126	Reprint of: Modelling the effects of various contents of fillers on the relaxation rate of elastomers. <i>Materials & Design</i> , 2012 , 35, 839-846		3
125	Stress gradient continuum theory. <i>Mechanics Research Communications</i> , 2012 , 40, 16-25	2.2	59
124	Experimental and numerical study of dynamic strain ageing and its relation to ductile fracture of a CMn steel. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 547, 19-31	5.3	21
123	A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys. <i>Journal of the Mechanics and Physics of Solids</i> , 2012 , 60, 1243-1256	5	67
122	Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. <i>International Journal of Solids and Structures</i> , 2012 , 49, 2714-2732	3.1	35
121	Identification of a strain-aging model accounting for Lders behavior in a C-Mn steel. <i>Philosophical Magazine</i> , 2012 , 92, 3589-3617	1.6	22
120	Generalized Continuum Modelling of Crystal Plasticity 2012 , 181-287		5
119	Generalised continuum modelling of grain size effects in polycrystals. <i>Comptes Rendus - Mecanique</i> , 2012 , 340, 261-274	2.1	19
118	Analysis of particle induced dislocation structures using three-dimensional dislocation dynamics and strain gradient plasticity. <i>Computational Materials Science</i> , 2012 , 52, 33-39	3.2	24

(2011-2012)

117	Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. <i>Computational Materials Science</i> , 2012 , 52, 7-13	3.2	52
116	Elastoplasticity of auxetic materials. Computational Materials Science, 2012, 64, 57-61	3.2	55
115	Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. <i>Philosophical Magazine</i> , 2012 , 92, 3618-3642	1.6	55
114	Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: Application to recrystallisation. <i>Philosophical Magazine</i> , 2012 , 92, 3643-3664	1.6	44
113	EVALUATION OF GENERALIZED CONTINUUM SUBSTITUTION MODELS FOR HETEROGENEOUS MATERIALS. International Journal for Multiscale Computational Engineering, 2012 , 10, 527-549	2.4	54
112	Advancement of Experimental Methods and Cailletaud Material Model for Life Prediction of Gas Turbine Blades Exposed to Combined Cycle Fatigue 2012 ,		2
111	First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. <i>Computational Materials Science</i> , 2011 , 50, 1299-1304	3.2	54
110	A multiscale microstructure model of carbon black distribution in rubber. <i>Journal of Microscopy</i> , 2011 , 241, 243-60	1.9	33
109	Portevin[le Chatelier (PLC) instabilities and slant fracture in CMn steel round tensile specimens. <i>Scripta Materialia</i> , 2011 , 64, 430-433	5.6	27
108	Micromorphic approach to single crystal plasticity and damage. <i>International Journal of Engineering Science</i> , 2011 , 49, 1311-1325	5.7	88
107	Generalized continua and non-homogeneous boundary conditions in homogenisation methods. <i>ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik</i> , 2011 , 91, 90-109	1	114
106	Virtual improvement of ice cream properties by computational homogenization of microstructures. <i>Mechanics Research Communications</i> , 2011 , 38, 136-140	2.2	9
105	Homogenization of periodic auxetic materials. <i>Procedia Engineering</i> , 2011 , 10, 1847-1852		40
104	Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate. <i>Philosophical Magazine Letters</i> , 2011 , 91, 164-172	1	25
103	Numerical Modeling of Fatigue Crack Growth in Single Crystals Based on Microdamage Theory. <i>International Journal of Damage Mechanics</i> , 2011 , 20, 681-705	3	22
102	LARGE-SCALE COMPUTATIONS OF EFFECTIVE ELASTIC PROPERTIES OF RUBBER WITH CARBON BLACK FILLERS. <i>International Journal for Multiscale Computational Engineering</i> , 2011 , 9, 271-303	2.4	22
101	Formulations of Strain Gradient Plasticity. Advanced Structured Materials, 2011, 137-149	0.6	10
100	Micromorphic vs. Phase-Field Approaches for Gradient Viscoplasticity and Phase Transformations. Lecture Notes in Applied and Computational Mechanics, 2011, 69-88	0.3	13

99	The Micromorphic versus Phase Field Approach to Gradient Plasticity and Damage with Application to Cracking in Metal Single Crystals. <i>Lecture Notes in Applied and Computational Mechanics</i> , 2011 , 135-1	53.3	9
98	Numerical Simulation of the Portevin Le Chatelier Effect in Various Material and at Different Scales. <i>Materials Science Forum</i> , 2010 , 638-642, 2670-2675	0.4	1
97	Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction. <i>New Journal of Physics</i> , 2010 , 12, 035018	2.9	24
96	Non-Linear Mechanics of Materials. Solid Mechanics and Its Applications, 2010,	0.4	77
95	Modeling Strain Localization Bands in Metal Foams. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 360-366	0.3	8
94	Size effects in generalised continuum crystal plasticity for two-phase laminates. <i>Journal of the Mechanics and Physics of Solids</i> , 2010 , 58, 1963-1994	5	90
93	Numerical aspects in the finite element simulation of the Portevinlle Chatelier effect. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2010 , 199, 734-754	5.7	44
92	Finite element simulations of coherent diffraction in elastoplastic polycrystalline aggregates. <i>Comptes Rendus Physique</i> , 2010 , 11, 293-303	1.4	4
91	Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. <i>International Journal of Solids and Structures</i> , 2010 , 47, 3367-3376	3.1	122
90	The role of the fluctuation field in higher order homogenization. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2010 , 10, 431-432	0.2	4
89	Mechanisms and Modeling of Bake-Hardening Steels: Part II. Complex Loading Paths. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2009 , 40, 1375-1382	2.3	11
88	Mechanisms and Modeling of Bake-Hardening Steels: Part I. Uniaxial Tension. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2009 , 40, 1367-1374	2.3	31
87	New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 524, 69-76	5.3	143
86	Overspeed burst of elastoviscoplastic rotating disks: Part II Burst of a superalloy turbine disk. <i>European Journal of Mechanics, A/Solids</i> , 2009 , 28, 428-432	3.7	24
85	Mechanical behavior and crack tip plasticity of a strain aging sensitive steel. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 526, 156-165	5.3	32
84	Overspeed burst of elastoviscoplastic rotating disks IPart I: Analytical and numerical stability analyses. <i>European Journal of Mechanics, A/Solids</i> , 2009 , 28, 36-44	3.7	32
83	Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage. <i>Journal of Engineering Mechanics - ASCE</i> , 2009 , 135, 117-131	2.4	390
82	Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity. <i>Computational Materials Science</i> , 2009 , 45, 793-799	3.2	19

(2007-2009)

81	Finite element formulation of a phase field model based on the concept of generalized stresses. <i>Computational Materials Science</i> , 2009 , 45, 800-805	3.2	61
80	Crack growth modelling in single crystals based on higher order continua. <i>Computational Materials Science</i> , 2009 , 45, 756-761	3.2	25
79	Finite element crystal plasticity analysis of spherical indentation in bulk single crystals and coatings. <i>Computational Materials Science</i> , 2009 , 45, 774-782	3.2	45
78	Generalization of the polycrystalline Emodel: Finite element assessment and application to softening material behavior. <i>Computational Materials Science</i> , 2009 , 45, 1104-1112	3.2	15
77	Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. <i>European Journal of Computational Mechanics</i> , 2009 , 18, 485-523	0.5	63
76	Modelling the effects of various contents of fillers on the relaxation rate of filled rubbers 2009 , 417-4	22	
75	Mechanical Behavior of Nickel Base Foams for Diesel Particle Filter Applications. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2009 , 51-67	0.3	2
74	Numerical modelling of the Portevin-Le Chatelier effect. <i>European Journal of Computational Mechanics</i> , 2008 , 17, 761-772	0.5	8
73	Finite element simulations of the Portevin-Le Chatelier effect in metal-matrix composites. <i>Philosophical Magazine</i> , 2008 , 88, 3389-3414	1.6	12
72	Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. <i>Philosophical Magazine</i> , 2008 , 88, 3549-3563	1.6	51
71	Hypertemperature in thermoelastic solids. <i>Comptes Rendus - Mecanique</i> , 2008 , 336, 347-353	2.1	57
70	Ensemble averaging stressEtrain fields in polycrystalline aggregates with a constrained surface microstructure [Part 1: anisotropic elastic behaviour. <i>Philosophical Magazine</i> , 2007 , 87, 1401-1424	1.6	59
69	Ensemble averaging stressEtrain fields in polycrystalline aggregates with a constrained surface microstructure [Part 2: crystal plasticity. <i>Philosophical Magazine</i> , 2007 , 87, 1425-1446	1.6	78
68	A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results. <i>Journal of Elasticity</i> , 2007 , 87, 239-276	1.5	111
67	Modeling of Deformation of FCC Polycrystalline Aggregates Using a Dislocation-based Crystal Plasticity Model. <i>AIP Conference Proceedings</i> , 2007 ,	О	5
66	Finite element simulations of the cyclic elastoplastic behaviour of copper thin films. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2007 , 15, S217-S238	2	20
65	Finite element simulations of the deformation of fused-cast refractories based on X-ray computed tomography. <i>Computational Materials Science</i> , 2007 , 39, 224-229	3.2	48
64	Simulations of stressEtrain heterogeneities in copper thin films: Texture and substrate effects. <i>Computational Materials Science</i> , 2007 , 39, 137-141	3.2	16

63	Portevin LeChatelier effect in AlMg alloys: Influence of obstacles Lexperiments and modelling. <i>Computational Materials Science</i> , 2007 , 39, 106-112	3.2	50
62	On the Size of the Representative Volume Element for Isotropic Elastic Polycrystalline Copper. <i>Solid Mechanics and Its Applications</i> , 2007 , 171-180	0.4	12
61	Thermodynamical Frameworks for Higher Grade Material Theories with Internal Variables or Additional Degrees of Freedom. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2006 , 31,	3.8	20
60	Crack-tip stressEtrain fields in single crystal nickel-base superalloys at high temperature under cyclic loading. <i>Computational Materials Science</i> , 2006 , 37, 42-50	3.2	36
59	Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. <i>European Journal of Mechanics, A/Solids</i> , 2006 , 25, 526-549	3.7	85
58	Nonlinear microstrain theories. <i>International Journal of Solids and Structures</i> , 2006 , 43, 7224-7245	3.1	181
57	Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 3960-3982	5.7	145
56	Micro-mechanical modeling of the inelastic behavior of directionally solidified materials. <i>Mechanics of Materials</i> , 2006 , 38, 203-217	3.3	40
55	Mechanical Behavior Modeling in the Presence of Strain Aging 2006 , 827-828		1
54	3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography. <i>Philosophical Magazine</i> , 2005 , 85, 2147-2175	1.6	70
53	Numerical study of creep in two-phase aggregates with a large rheology contrast: Implications for the lower mantle. <i>Earth and Planetary Science Letters</i> , 2005 , 237, 223-238	5.3	39
52	Generalized Continua 2005, 1-7		4
51	Generalized Continuum Modelling of Single and Polycrystal Plasticity 2005 , 513-527		
50	Finite element simulations of dynamic strain ageing effects at V-notches and crack tips. <i>Scripta Materialia</i> , 2005 , 52, 1181-1186	5.6	40
49	Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography. <i>Journal of Materials Science</i> , 2005 , 40, 5801-5	584r∄	47
48	Continuum modeling of strain localization phenomena in metallic foams. <i>Journal of Materials Science</i> , 2005 , 40, 5903-5910	4.3	43
47	Cosserat continuum modelling of grain size effects in metal polycrystals. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2005 , 5, 79-82	0.2	13
46	Representative Volume Element: A Statistical Point of View 2004 , 21-27		2

(2001-2004)

45	Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect. <i>International Journal of Mechanical Sciences</i> , 2004 , 46, 217-24	4 4 ·5	68
44	Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part I. Deformation modes. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 797-811	2.3	38
43	Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 813-823	2.3	26
42	Strain localization phenomena associated with static and dynamic strain ageing in notched specimens: experiments and finite element simulations. <i>Materials Science & Discourse Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2004 , 387-389, 181-185	5.3	61
41	On the design of single crystal turbine blades. <i>Revue De Metallurgie</i> , 2003 , 100, 165-172		13
40	Numerical study of crystalline plasticity: measurements of the heterogeneities due to grain boundaries under small strains. <i>Revue De Metallurgie</i> , 2003 , 100, 815-823		5
39	Strain localization at the crack tip in single crystal CT specimens under monotonous loading: 3D Finite Element analyses and application to nickel-base superalloys. <i>International Journal of Fracture</i> , 2003 , 124, 43-77	2.3	64
38	Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica, 2003, 160, 71-111	2.1	185
37	Determination of the size of the representative volume element for random composites: statistical and numerical approach. <i>International Journal of Solids and Structures</i> , 2003 , 40, 3647-3679	3.1	1276
36	Strain localization phenomena under cyclic loading: application to fatigue of single crystals. <i>Computational Materials Science</i> , 2003 , 26, 61-70	3.2	27
35	Some elements of microstructural mechanics. Computational Materials Science, 2003, 27, 351-374	3.2	139
34	Plastic slip distribution in two-phase laminate microstructures: Dislocation-based versus generalized-continuum approaches. <i>Philosophical Magazine</i> , 2003 , 83, 245-276	1.6	49
33	Subgrain formation during deformation: Physical origin and consequences. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2002 , 33, 319-327	2.3	54
32	Finite-element calculations of the lattice rotation field of a tensile-loaded nickel-based alloy multicrystal and comparison with topographical X-ray diffraction measurements. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2002 , 33, 2825-2833	2.3	12
31	Introduction au calcul de microstructuresElements of microstructural mechanics. <i>Mecanique Et Industries</i> , 2002 , 3, 439-439		5
30	Strain Gradient Crystal Plasticity: Thermomechanical Formulations and Applications. <i>Journal of the Mechanical Behavior of Materials</i> , 2002 , 13, 219-232	1.9	37
29	Homogenization methods and mechanics of generalized continua - part 2. <i>Theoretical and Applied Mechanics</i> , 2002 , 113-144	0.4	66
28	Polycrystal modelling of IF-Ti steel under complex loading path. <i>International Journal of Plasticity</i> , 2001 , 17, 65-85	7.6	61

27	Intergranular and intragranular behavior of polycrystalline aggregates.Part 2: Results. <i>International Journal of Plasticity</i> , 2001 , 17, 537-563	7.6	180
26	Asymptotic analysis of heterogeneous Cosserat media. <i>International Journal of Solids and Structures</i> , 2001 , 38, 4585-4608	3.1	138
25	Strain localization patterns at a crack tip in generalized single crystal plasticity. <i>Scripta Materialia</i> , 2001 , 44, 953-958	5.6	33
24	Polycrystalline Plasticity Under Small Strains 2001 , 191-206		1
23	Cosserat Media 2001 , 1715-1717		9
22	Calibrating a homogenized polycrystal model from large scale FE computations of polycrystalline aggregates. <i>European Physical Journal Special Topics</i> , 2001 , 11, Pr5-277-Pr5-284		3
21	Cosserat Modeling of Size Effects in Crystalline Solids. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 653,		2
20	Non-Local Plasticity at Microscale: A Dislocation-Based and a Cosserat Model. <i>Physica Status Solidi</i> (B): Basic Research, 2000 , 221, 583-596	1.3	20
19	Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. <i>International Journal of Solids and Structures</i> , 2000 , 37, 7105-7126	3.1	180
18	Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2000 , 289, 276-288	5.3	148
17	Thermoelasticity of second-grade media. Solid Mechanics and Its Applications, 2000, 163-176	0.4	11
16	STRAIN LOCALIZATION PHENOMENA IN GENERALIZED SINGLE CRYSTAL PLASTICITY. <i>Journal of the Mechanical Behavior of Materials</i> , 2000 , 11, 45-50	1.9	5
15	Modeling the mechanical behavior of a multicrystalline zinc coating on a hot-dip galvanized steel sheet. <i>Computational Materials Science</i> , 2000 , 19, 189-204	3.2	46
14	Cosserat Modeling of Size Effects in Crystalline Solids. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 653, 1		
13	Modelling Finite Deformation of Polycrystals Using Local Objective Frames. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1999 , 79, 199-202	1	13
12	Estimating the overall properties of heterogeneous Cosserat materials. <i>Modelling and Simulation in Materials Science and Engineering</i> , 1999 , 7, 829-840	2	72
11	Cosserat overall modeling of heterogeneous materials. <i>Mechanics Research Communications</i> , 1998 , 25, 449-454	2.2	199
10	Modeling slip, kink and shear banding in classical and generalized single crystal plasticity. <i>Acta Materialia</i> , 1998 , 46, 3265-3281	8.4	83

LIST OF PUBLICATIONS

9	Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity. <i>European Physical Journal Special Topics</i> , 1998 , 08, Pr8-357-Pr8-364		4
8	On sire effects in torsion of multi- and polycrystalline specimens. <i>European Physical Journal Special Topics</i> , 1998 , 08, Pr8-325-Pr8-332		5
7	Mechanics of generalized continua: construction by homogenizaton. <i>European Physical Journal Special Topics</i> , 1998 , 08, Pr4-39-Pr4-48		39
6	An estimation of overall properties of heterogeneous Cosserat materials. <i>European Physical Journal Special Topics</i> , 1998 , 08, Pr8-111-Pr8-118		7
5	Computation of coarse grain structures using a homogeneous equivalent medium. <i>European Physical Journal Special Topics</i> , 1998 , 08, Pr8-197-Pr8-205		8
4	Characterization and Simulation of the Mechanical Behaviour of Multilayered Components Composing a Fibrous Cylinder Head Gasket 1998 , 139-146		
3	Modelling the Cyclic Behaviour of Two-Phase Single Crystal Nickel-Base Superalloys. <i>Solid Mechanics and Its Applications</i> , 1996 , 51-58	0.4	3
2	A pruning algorithm preserving modeling capabilities for polycrystalline data. <i>Computational Mechanics</i> ,1	4	
1	On the torsion of isotropic elastoplastic Cosserat circular cylinders. <i>Journal of Micromechanics and Molecular Physics</i> ,1-14	1.4	1