D R Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663896/publications.pdf

Version: 2024-02-01

67 papers

2,085 citations

257450 24 h-index 265206 42 g-index

74 all docs

74 docs citations

times ranked

74

2554 citing authors

#	Article	IF	CITATIONS
1	Introduction to the SPARC Reanalysis Intercomparison ProjectÂ(S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics, 2017, 17, 1417-1452.	4.9	276
2	The predictability of the extratropical stratosphere on monthly timeâ€scales and its impact on the skill of tropospheric forecasts. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 987-1003.	2.7	162
3	The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters. Astronomy and Astrophysics, 2014, 561, A1.	5.1	124
4	The ASSET intercomparison of ozone analyses: method and first results. Atmospheric Chemistry and Physics, 2006, 6, 5445-5474.	4.9	110
5	Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results. Atmospheric Chemistry and Physics, 2013, 13, 9233-9268.	4.9	88
6	The Assimilation of Envisat data (ASSET) project. Atmospheric Chemistry and Physics, 2007, 7, 1773-1796.	4.9	69
7	Examining the Predictability of the Stratospheric Sudden Warming of January 2013 Using Multiple NWP Systems. Monthly Weather Review, 2016, 144, 1935-1960.	1.4	62
8	A 27 day persistence model of nearâ€Earth solar wind conditions: A long leadâ€time forecast and a benchmark for dynamical models. Space Weather, 2013, 11, 225-236.	3.7	58
9	Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather, 2017, 15, 577-588.	3.7	52
10	The Representation of Water Vapor and Its Dependence on Vertical Resolution in the Hadley Centre Climate Model. Journal of Climate, 2001, 14, 3065-3085.	3.2	51
11	Using the UM dynamical cores to reproduce idealised 3-D flows. Geoscientific Model Development, 2014, 7, 3059-3087.	3.6	47
12	An observing system simulation experiment to evaluate the scientific merit of wind and ozone measurements from the future SWIFT instrument. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 503-523.	2.7	45
13	Improved variational analyses using a nonlinear humidity control variable. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1875-1887.	2.7	43
14	Impacts of introducing a convective gravityâ€wave parameterization upon the QBO in the Met Office Unified Model. Geophysical Research Letters, 2013, 40, 1873-1877.	4.0	41
15	Parameterized Gravity Wave Momentum Fluxes from Sources Related to Convection and Large-Scale Precipitation Processes in a Global Atmosphere Model. Journals of the Atmospheric Sciences, 2015, 72, 4349-4371.	1.7	41
16	Development of Space Weather Reasonable Worst ase Scenarios for the UK National Risk Assessment. Space Weather, 2021, 19, e2020SW002593.	3.7	41
17	Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system. Atmospheric Chemistry and Physics, 2007, 7, 939-959.	4.9	40
18	Assimilation of EOS MLS ozone observations in the Met Office dataâ€assimilation system. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1771-1788.	2.7	36

#	Article	IF	CITATIONS
19	Troposphere to stratosphere transport at low latitudes as studies using HALOE observations of water vapour 1992–1997. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 169-192.	2.7	34
20	Stratospheric Vacillations and the Major Warming over Antarctica in 2002. Journals of the Atmospheric Sciences, 2005, 62, 629-639.	1.7	34
21	Simulation of the semi-annual oscillation of the equatorial middle atmosphere using the Extended UGAMP General Circulation Model. Quarterly Journal of the Royal Meteorological Society, 1994, 120, 1559-1588.	2.7	29
22	The January 2006 low ozone event over the UK. Atmospheric Chemistry and Physics, 2007, 7, 961-972.	4.9	28
23	Validation of a priori CME arrival predictions made using realâ€time heliospheric imager observations. Space Weather, 2015, 13, 35-48.	3.7	27
24	Assimilation of stratospheric ozone from MIPAS into a global general-circulation model: The September 2002 vortex split. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 231-257.	2.7	26
25	Estimation of Arctic ozone loss in winter 2004/05 based on assimilation of EOS MLS and SBUV/2 observations. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1833-1841.	2.7	26
26	Impact of EOS MLS ozone data on mediumâ€extended range ensemble weather forecasts. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9253-9266.	3.3	25
27	The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era. Journal of Space Weather and Space Climate, 2021, 11, 39.	3.3	24
28	Geomagnetic Activity Index Hpo. Geophysical Research Letters, 2022, 49, .	4.0	24
29	Assessing the performance of thermospheric modeling with data assimilation throughout solar cycles 23 and 24. Space Weather, 2015, 13, 220-232.	3.7	23
30	A comparison of the effects of initializing different thermosphereâ€ionosphere model fields on storm time plasma density forecasts. Journal of Geophysical Research: Space Physics, 2013, 118, 7329-7337.	2.4	22
31	Modeling Geoelectric Fields in Ireland and the UK for Space Weather Applications. Space Weather, 2019, 17, 216-237.	3.7	21
32	A 12year comparison of MIDAS and IRI 2007 ionospheric Total Electron Content. Advances in Space Research, 2012, 49, 1348-1355.	2.6	20
33	Transport in the Low-Latitude Tropopause Zone Diagnosed Using Particle Trajectories. Journals of the Atmospheric Sciences, 2001, 58, 173-192.	1.7	19
34	Probabilistic Forecasts of Storm Sudden Commencements From Interplanetary Shocks Using Machine Learning. Space Weather, 2020, 18, e2020SW002603.	3.7	18
35	The use of ionosondes in GPS ionospheric tomography at low latitudes. Journal of Geophysical Research, 2012, 117, .	3.3	17
36	The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses. Atmospheric Chemistry and Physics, 2009, 9, 995-1016.	4.9	16

#	Article	IF	CITATIONS
37	Sensitivity of GCM tropical middle atmosphere variability and climate to ozone and parameterized gravity wave changes. Journal of Geophysical Research, 2010, 115, .	3.3	16
38	Future Directions for Whole Atmosphere Modeling: Developments in the Context of Space Weather. Space Weather, 2019, 17, 1342-1350.	3.7	16
39	Use of Canadian Quick covariances in the Met Office data assimilation system. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1567-1582.	2.7	15
40	The Space Weather Atmosphere Models and Indices (SWAMI) project: Overview and first results. Journal of Space Weather and Space Climate, 2020, 10, 18.	3.3	15
41	Impact of Inner Heliospheric Boundary Conditions on Solar Wind Predictions at Earth. Space Weather, 2021, 19, e2020SW002499.	3.7	15
42	The semi-annual oscillation in upper stratospheric and mesospheric water vapour as observed by HALOE. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 2493-2515.	2.7	14
43	Estimation of Arctic O ₃ loss during winter 2006/2007 using data assimilation and comparison with a chemical transport model. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 118-128.	2.7	14
44	Ionospheric imaging in Africa. Radio Science, 2014, 49, 19-27.	1.6	14
45	Measurement of Ionospheric Total Electron Content Using Singleâ€Frequency Geostationary Satellite Observations. Radio Science, 2019, 54, 10-19.	1.6	14
46	The South Georgia Wave Experiment: A Means for Improved Analysis of Gravity Waves and Low-Level Wind Impacts Generated from Mountainous Islands. Bulletin of the American Meteorological Society, 2018, 99, 1027-1040.	3.3	13
47	Sensitivity of the Extended UGAMP General Circulation Model to the specification of gravity-wave phase speeds. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 457-468.	2.7	9
48	First results from a 3-dimensional middle atmosphere model. Advances in Space Research, 1993, 13, 363-372.	2.6	8
49	Validation of Met Office upper stratospheric and mesospheric analyses. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1214-1228.	2.7	8
50	Stratospheric gravity waves over the mountainous island of South Georgia: testing a high-resolution dynamical model with 3-D satellite observations and radiosondes. Atmospheric Chemistry and Physics, 2021, 21, 7695-7722.	4.9	7
51	Winds and tides of the Extended Unified Model in the mesosphere and lower thermosphere validated with meteor radar observations. Annales Geophysicae, 2021, 39, 487-514.	1.6	7
52	Tests of a scheme for regression retrieval and time-space interpolation of stratospheric temperature from satellite measurements. Quarterly Journal of the Royal Meteorological Society, 1990, 116, 1449-1470.	2.7	6
53	An Updated Climatology of the Troposphere–Stratosphere Configuration of the Met Office's Unified Model. Journals of the Atmospheric Sciences, 2001, 58, 2000-2008.	1.7	6
54	Stable extension of the unified model into the mesosphere and lower thermosphere. Journal of Space Weather and Space Climate, 2020, 10, 19.	3.3	6

#	Article	IF	Citations
55	Examining Local Time Variations in the Gains and Losses of Open Magnetic Flux During Substorms. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027369.	2.4	6
56	Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations. Space Weather, 2022, 20, e2020SW002554.	3.7	6
57	Addressing Gaps in Space Weather Operations and Understanding With Small Satellites. Space Weather, 2021, 19, e2020SW002566.	3.7	5
58	A Citizen Science Network for Measurements of Atmospheric Ionizing Radiation Levels. Space Weather, 2019, 17, 877-893.	3.7	4
59	Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weatherâ€Oriented Research. Space Weather, 2022, 20, .	3.7	4
60	Tides in the Extended UGAMP General Circulation Model. Quarterly Journal of the Royal Meteorological Society, 1994, 120, 1589-1611.	2.7	3
61	Offline estimates and tuning of mesospheric gravityâ€wave forcing using Met Office analyses. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1025-1038.	2.7	3
62	Incorporation of Heliospheric Imagery Into the CME Analysis Tool for Improvement of CME Forecasting. Space Weather, 2019, 17, 1312-1328.	3.7	3
63	Evaluating Auroral Forecasts Against Satellite Observations. Space Weather, 2021, 19, e2020SW002688.	3.7	3
64	The semi-annual oscillation in upper stratospheric and mesospheric water vapour as observed by HALOE. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 2493-2515.	2.7	3
65	Low-ozone events in the southern polar summer as indicated by Met Office ozone analyses. Journal of Geophysical Research, 2011, 116, .	3.3	2
66	International Coordination and Support for SmallSatâ€Enabled Space Weather Activities. Space Weather, 2020, 18, e2020SW002568.	3.7	2
67	How well do we forecast the aurora?. Astronomy and Geophysics, 2019, 60, 5.22-5.25.	0.2	1