List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6638853/publications.pdf Version: 2024-02-01



| #  | ARTICLE                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Early Introduction and Rise of the Omicron Severe Acute Respiratory Syndrome Coronavirus 2<br>(SARS-CoV-2) Variant in Highly Vaccinated University Populations. Clinical Infectious Diseases, 2023, 76,<br>e400-e408.                                                                             | 5.8 | 22        |
| 2  | Viral Dynamics of Omicron and Delta Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)<br>Variants With Implications for Timing of Release from Isolation: A Longitudinal Cohort Study. Clinical<br>Infectious Diseases, 2023, 76, e227-e233.                                           | 5.8 | 38        |
| 3  | Efficacy of Pfizer-BioNTech in SARS-CoV-2 Delta cluster. International Journal of Infectious Diseases, 2022, 114, 62-64.                                                                                                                                                                          | 3.3 | 3         |
| 4  | Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection Associates With Unstable Housing and Occurs in the Presence of Antibodies. Clinical Infectious Diseases, 2022, 75, e208-e215.                                                                                                         | 5.8 | 16        |
| 5  | Recombinant Lloviu virus as a tool to study viral replication and host responses. PLoS Pathogens, 2022, 18, e1010268.                                                                                                                                                                             | 4.7 | 11        |
| 6  | Humanized mice reveal a macrophage-enriched gene signature defining human lung tissue protection during SARS-CoV-2 infection. Cell Reports, 2022, 39, 110714.                                                                                                                                     | 6.4 | 14        |
| 7  | A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Research, 2021, 31, 512-528.                                                                                                                                               | 5.5 | 29        |
| 8  | Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy.<br>Analytical Chemistry, 2021, 93, 4100-4107.                                                                                                                                                      | 6.5 | 37        |
| 9  | Factors associated with progression to death in patients with Lassa fever in Nigeria: an observational study. Lancet Infectious Diseases, The, 2021, 21, 876-886.                                                                                                                                 | 9.1 | 8         |
| 10 | Forebrain Neural Precursor Cells Are Differentially Vulnerable to Zika Virus Infection. ENeuro, 2021,<br>8, ENEURO.0108-21.2021.                                                                                                                                                                  | 1.9 | 2         |
| 11 | Coronavirus Disease 2019 Vaccine Impact on Rates of Severe Acute Respiratory Syndrome Coronavirus<br>2 Cases and Postvaccination Strain Sequences Among Health Care Workers at an Urban Academic<br>Medical Center: A Prospective Cohort Study. Open Forum Infectious Diseases, 2021, 8, ofab465. | 0.9 | 38        |
| 12 | SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. Journal of Virology, 2021, 95, e0086221.                                                                                                                                                                                           | 3.4 | 58        |
| 13 | Configurable Digital Virus Counter on Robust Universal DNA Chips. ACS Sensors, 2021, 6, 229-237.                                                                                                                                                                                                  | 7.8 | 20        |
| 14 | The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas.<br>Journal of Clinical Investigation, 2021, 131, .                                                                                                                                              | 8.2 | 27        |
| 15 | Acute and Chronic Cardiovascular Manifestations of COVID-19: Role for Endotheliopathy. Methodist<br>DeBakey Cardiovascular Journal, 2021, 17, 53-62.                                                                                                                                              | 1.0 | 13        |
| 16 | Quantification of Viral and Host Biomarkers in the Liver of Rhesus Macaques. American Journal of<br>Pathology, 2020, 190, 1449-1460.                                                                                                                                                              | 3.8 | 15        |
| 17 | Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Molecular Cell, 2020, 80, 1104-1122.e9.                                                                                                                                                                    | 9.7 | 94        |
| 18 | Previremic Identification of Ebola or Marburg Virus Infection Using Integrated Host-Transcriptome and Viral Genome Detection. MBio, 2020, 11, .                                                                                                                                                   | 4.1 | 6         |

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Examining the Role of Niemann–Pick C1 Protein in the Permissiveness of Aedes Mosquitoes to<br>Filoviruses. ACS Infectious Diseases, 2020, 6, 2023-2028.               | 3.8  | 2         |
| 20 | High-Throughput, High-Resolution Interferometric Light Microscopy of Biological Nanoparticles. ACS<br>Nano, 2020, 14, 2002-2013.                                      | 14.6 | 26        |
| 21 | Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology, 2018, 518, 406-413.                                              | 2.4  | 87        |
| 22 | Group B <i>Wolbachia</i> Strain-Dependent Inhibition of Arboviruses. DNA and Cell Biology, 2018, 37, 2-6.                                                             | 1.9  | 7         |
| 23 | HoTResDB: host transcriptional response database for viral hemorrhagic fevers. Bioinformatics, 2018,<br>34, 321-322.                                                  | 4.1  | 1         |
| 24 | A conserved transcriptional response to intranasal Ebola virus exposure in nonhuman primates prior<br>to onset of fever. Science Translational Medicine, 2018, 10, .  | 12.4 | 25        |
| 25 | A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases. Science<br>Translational Medicine, 2018, 10, .                                    | 12.4 | 54        |
| 26 | <i>Wolbachia w</i> Stri Blocks Zika Virus Growth at Two Independent Stages of Viral Replication.<br>MBio, 2018, 9, .                                                  | 4.1  | 45        |
| 27 | T-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in<br>Humans. Journal of Infectious Diseases, 2018, 218, S508-S518. | 4.0  | 25        |
| 28 | Differential Mechanisms for the Involvement of Polyamines and Hypusinated eIF5A in Ebola Virus Gene<br>Expression. Journal of Virology, 2018, 92, .                   | 3.4  | 34        |
| 29 | Growth-Adaptive Mutations in the Ebola Virus Makona Glycoprotein Alter Different Steps in the Virus<br>Entry Pathway. Journal of Virology, 2018, 92, .                | 3.4  | 15        |
| 30 | Comparative Transcriptomics in Ebola Makona-Infected Ferrets, Nonhuman Primates, and Humans.<br>Journal of Infectious Diseases, 2018, 218, S486-S495.                 | 4.0  | 15        |
| 31 | Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biology, 2017, 18, 4.                                | 8.8  | 115       |
| 32 | Hypusination of eIF5A as a Target for Antiviral Therapy. DNA and Cell Biology, 2017, 36, 198-201.                                                                     | 1.9  | 28        |
| 33 | Disposable cartridge platform for rapid detection of viral hemorrhagic fever viruses. Lab on A Chip, 2017, 17, 917-925.                                               | 6.0  | 18        |
| 34 | Generating Recombinant Vesicular Stomatitis Viruses for Use as Vaccine Platforms. Methods in<br>Molecular Biology, 2017, 1581, 203-222.                               | 0.9  | 7         |
| 35 | Variable Inhibition of Zika Virus Replication by Different Wolbachia Strains in Mosquito Cell<br>Cultures. Journal of Virology, 2017, 91, .                           | 3.4  | 41        |
| 36 | Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and<br>Selection in Tissue Culture. Journal of Virology, 2017, 91, .   | 3.4  | 24        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Visualizing Ebolavirus Particles Using Single-Particle Interferometric Reflectance Imaging Sensor<br>(SP-IRIS). Methods in Molecular Biology, 2017, 1628, 259-270.                                           | 0.9  | 4         |
| 38 | DNA-Directed Antibody Immobilization for Robust Protein Microarrays: Application to Single Particle<br>Detection â€~DNA-Directed Antibody Immobilization. Methods in Molecular Biology, 2017, 1571, 187-206. | 0.9  | 5         |
| 39 | Zika virus induced cellular remodelling. Cellular Microbiology, 2017, 19, e12740.                                                                                                                            | 2.1  | 37        |
| 40 | Robust Visualization and Discrimination of Nanoparticles by Interferometric Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 394-403.                                              | 2.9  | 29        |
| 41 | Polyamines and Their Role in Virus Infection. Microbiology and Molecular Biology Reviews, 2017, 81, .                                                                                                        | 6.6  | 82        |
| 42 | An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug<br>screening. Antiviral Research, 2017, 146, 21-27.                                                         | 4.1  | 34        |
| 43 | Comparison of Transcriptomic Platforms for Analysis of Whole Blood from Ebola-Infected<br>Cynomolgus Macaques. Scientific Reports, 2017, 7, 14756.                                                           | 3.3  | 32        |
| 44 | Therapeutics Against Filovirus Infection. Current Topics in Microbiology and Immunology, 2017, 411, 263-290.                                                                                                 | 1.1  | 3         |
| 45 | Host Transcriptional Response to Ebola Virus Infection. Vaccines, 2017, 5, 30.                                                                                                                               | 4.4  | 23        |
| 46 | Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses. PLoS ONE, 2017, 12, e0179728.                                                                        | 2.5  | 25        |
| 47 | Multiplexed Metagenomic Deep Sequencing To Analyze the Composition of High-Priority Pathogen<br>Reagents. MSystems, 2016, 1, .                                                                               | 3.8  | 19        |
| 48 | New Approaches for Virus Detection through Multidisciplinary Partnerships. ACS Infectious Diseases, 2016, 2, 378-381.                                                                                        | 3.8  | 2         |
| 49 | Digital detection of biomarkers for high-sensitivity diagnostics at low-cost. , 2016, , .                                                                                                                    |      | 1         |
| 50 | Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication. MBio, 2016,<br>7, .                                                                                                 | 4.1  | 50        |
| 51 | In vivo Ebola virus infection leads to a strong innate response in circulating immune cells. BMC<br>Genomics, 2016, 17, 707.                                                                                 | 2.8  | 54        |
| 52 | Real-Time Capture and Visualization of Individual Viruses in Complex Media. ACS Nano, 2016, 10, 2827-2833.                                                                                                   | 14.6 | 59        |
| 53 | Advancing rapid point-of-care viral diagnostics to a clinical setting. Future Virology, 2015, 10, 313-328.                                                                                                   | 1.8  | 18        |
| 54 | Probing the Virus Host Interaction in High Containment: An Approach Using Pooled Short Hairpin RNA.<br>Assay and Drug Development Technologies, 2015, 13, 34-43.                                             | 1.2  | 3         |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A Single-Vector, Single-Injection Trivalent Filovirus Vaccine: Proof of Concept Study in Outbred<br>Guinea Pigs. Journal of Infectious Diseases, 2015, 212, S384-S388.   | 4.0  | 34        |
| 56 | Immuno-evasive tactics by schistosomes identify an effective allergy preventative. Experimental Parasitology, 2015, 153, 139-150.                                        | 1.2  | 11        |
| 57 | Temporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus<br>Macaques. Journal of Virology, 2015, 89, 9875-9885.                 | 3.4  | 24        |
| 58 | Transcriptional Profiling of the Immune Response to Marburg Virus Infection. Journal of Virology, 2015, 89, 9865-9874.                                                   | 3.4  | 37        |
| 59 | DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral Pathogens. Analytical Chemistry, 2015, 87, 10505-10512.                                      | 6.5  | 46        |
| 60 | Transcriptional Correlates of Disease Outcome in Anticoagulant-Treated Non-Human Primates<br>Infected with Ebolavirus. PLoS Neglected Tropical Diseases, 2014, 8, e3061. | 3.0  | 22        |
| 61 | Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2. PLoS Pathogens, 2014, 10, e1004213.      | 4.7  | 34        |
| 62 | The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection.<br>PLoS Pathogens, 2014, 10, e1003904.                              | 4.7  | 35        |
| 63 | Lassa and Marburg viruses elicit distinct host transcriptional responses early after infection. BMC<br>Genomics, 2014, 15, 960.                                          | 2.8  | 29        |
| 64 | Activation of Stress Response Pathways Promotes Formation of Antiviral Granules and Restricts<br>Virus Replication. Molecular and Cellular Biology, 2014, 34, 2003-2016. | 2.3  | 47        |
| 65 | Digital Sensing and Sizing of Vesicular Stomatitis Virus Pseudotypes in Complex Media: A Model for<br>Ebola and Marburg Detection. ACS Nano, 2014, 8, 6047-6055.         | 14.6 | 86        |
| 66 | Vaccinia Reporter Viruses for Quantifying Viral Function at All Stages of Gene Expression. Journal of<br>Visualized Experiments, 2014, , .                               | 0.3  | 5         |
| 67 | A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection. ELife, 2014, 3, .                                                            | 6.0  | 15        |
| 68 | Identification of a Broad-Spectrum Inhibitor of Viral RNA Synthesis: Validation of a Prototype<br>Virus-Based Approach. Chemistry and Biology, 2013, 20, 424-433.        | 6.0  | 21        |
| 69 | Translational control by negative-strand RNA viruses: Methods for the study of a crucial virus/host interaction. Methods, 2013, 59, 180-187.                             | 3.8  | 5         |
| 70 | An Interferometric Reflectance Imaging Sensor for Point of Care Viral Diagnostics. IEEE Transactions on Biomedical Engineering, 2013, 60, 3276-3283.                     | 4.2  | 25        |
| 71 | Transcriptional Profiling of the Circulating Immune Response to Lassa Virus in an Aerosol Model of Exposure. PLoS Neglected Tropical Diseases, 2013, 7, e2171.           | 3.0  | 36        |
| 72 | Myxoma and Vaccinia Viruses Bind Differentially to Human Leukocytes. Journal of Virology, 2013, 87,<br>4445-4460.                                                        | 3.4  | 22        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Approaches for antiviral probe development: new libraries, new mechanisms. Future Virology, 2013, 8,<br>625-627.                                                                     | 1.8  | 0         |
| 74 | A Vesiculovirus Showing a Steepened Transcription Gradient and Dominant <i>trans</i> -Repression of Virus Transcription. Journal of Virology, 2012, 86, 8884-8889.                   | 3.4  | 5         |
| 75 | Label-Free Optical Biosensors for Virus Detection and Characterization. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1422-1433.                                 | 2.9  | 31        |
| 76 | Truncated Aspidosperma Alkaloid-Like Scaffolds: Unique Structures for the Discovery of New,<br>Bioactive Compounds. Heterocycles, 2012, 84, 135.                                     | 0.7  | 5         |
| 77 | Identification of a Pyridopyrimidinone Inhibitor of Orthopoxviruses from a Diversity-Oriented<br>Synthesis Library. Journal of Virology, 2012, 86, 2632-2640.                        | 3.4  | 14        |
| 78 | HijAkt. Progress in Molecular Biology and Translational Science, 2012, 106, 223-250.                                                                                                 | 1.7  | 76        |
| 79 | Single nanoparticle detectors for biological applications. Nanoscale, 2012, 4, 715.                                                                                                  | 5.6  | 68        |
| 80 | In vitro inhibition of monkeypox virus production and spread by Interferon-β. Virology Journal, 2012, 9,<br>5.                                                                       | 3.4  | 30        |
| 81 | Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS). Journal of Visualized Experiments, 2011, , .                                                 | 0.3  | 2         |
| 82 | Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Research, 2011, 91, 72-80.                   | 4.1  | 22        |
| 83 | Label-free multiplexed virus detection using spectral reflectance imaging. Biosensors and Bioelectronics, 2011, 26, 3432-3437.                                                       | 10.1 | 56        |
| 84 | Label-free pathogen sensing: Microarray studies for clinical and research applictions. , 2011, , .                                                                                   |      | 0         |
| 85 | Ultrasensitive plasmonic fano sensor enables seeing protein monolayers with naked eye. , 2011, , .                                                                                   |      | 1         |
| 86 | Interferometric Reflectance Imaging Sensor for point-of-care viral identification. , 2011, , .                                                                                       |      | 0         |
| 87 | Formation of Antiviral Cytoplasmic Granules during Orthopoxvirus Infection. Journal of Virology, 2011, 85, 1581-1593.                                                                | 3.4  | 81        |
| 88 | Therapeutics of Ebola Hemorrhagic Fever: Whole-Genome Transcriptional Analysis of Successful<br>Disease Mitigation. Journal of Infectious Diseases, 2011, 204, S1043-S1052.          | 4.0  | 38        |
| 89 | Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11784-11789. | 7.1  | 445       |
| 90 | Dominant Inhibition of Akt/Protein Kinase B Signaling by the Matrix Protein of a Negative-Strand RNA<br>Virus. Journal of Virology, 2011, 85, 422-431.                               | 3.4  | 37        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Integrating microfluidic sample concentrator with Interferometric Reflectance Imaging Sensor for point-of-care viral identification. , 2011, , .                                            |     | 0         |
| 92  | Spectral Reflectance Imaging for a Multiplexed, High-Throughput, Label-Free, and Dynamic Biosensing<br>Platform. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 635-646. | 2.9 | 12        |
| 93  | Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Research, 2010, 87, 187-194.                                                                                 | 4.1 | 92        |
| 94  | An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media.<br>Nano Letters, 2010, 10, 4962-4969.                                                    | 9.1 | 408       |
| 95  | Vesicular Stomatitis Virus Matrix Protein Mutations That Affect Association with Host Membranes and Viral Nucleocapsids. Journal of Biological Chemistry, 2009, 284, 4500-4509.             | 3.4 | 24        |
| 96  | Akt Inhibitor Akt-IV Blocks Virus Replication through an Akt-Independent Mechanism. Journal of Virology, 2009, 83, 11665-11672.                                                             | 3.4 | 26        |
| 97  | Murine B Cell Response to TLR7 Ligands Depends on an IFN-β Feedback Loop. Journal of Immunology, 2009, 183, 1569-1576.                                                                      | 0.8 | 119       |
| 98  | hnRNPs Relocalize to the Cytoplasm following Infection with Vesicular Stomatitis Virus. Journal of Virology, 2009, 83, 770-780.                                                             | 3.4 | 73        |
| 99  | Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood, 2009, 113, 2732-2741.                                            | 1.4 | 208       |
| 100 | New mRNAs Are Preferentially Translated during Vesicular Stomatitis Virus Infection. Journal of Virology, 2008, 82, 2286-2294.                                                              | 3.4 | 25        |
| 101 | αIIbβ3priming and clustering by orally active and intravenous integrin antagonists. Journal of<br>Thrombosis and Haemostasis, 2007, 5, 542-550.                                             | 3.8 | 28        |
| 102 | Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses. Virology, 2007, 362, 109-119.                                           | 2.4 | 126       |
| 103 | Integrin αIIbβ3:ligand interactions are linked to binding-site remodeling. Protein Science, 2006, 15, 1893-1906.                                                                            | 7.6 | 25        |
| 104 | Role of Residues 121 to 124 of Vesicular Stomatitis Virus Matrix Protein in Virus Assembly and Virus-Host Interaction. Journal of Virology, 2006, 80, 3701-3711.                            | 3.4 | 23        |
| 105 | Preferential Translation of Vesicular Stomatitis Virus mRNAs Is Conferred by Transcription from the Viral Genome. Journal of Virology, 2006, 80, 11733-11742.                               | 3.4 | 49        |
| 106 | Inhibition of Host and Viral Translation during Vesicular Stomatitis Virus Infection. Journal of<br>Biological Chemistry, 2005, 280, 13512-13519.                                           | 3.4 | 77        |
| 107 | Replication and Cytopathic Effect of Oncolytic Vesicular Stomatitis Virus in Hypoxic Tumor Cells In<br>Vitro and In Vivo. Journal of Virology, 2004, 78, 8960-8970.                         | 3.4 | 61        |
| 108 | Deactylase Inhibitors Disrupt Cellular Complexes Containing Protein Phosphatases and Deacetylases.<br>Journal of Biological Chemistry, 2004, 279, 7685-7691.                                | 3.4 | 116       |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The Disintegrin Echistatin Stabilizes Integrin αIlbβ3's Open Conformation and Promotes Its<br>Oligomerization. Journal of Molecular Biology, 2004, 342, 1625-1636.                                    | 4.2  | 28        |
| 110 | The Neuronal Actin-binding Proteins, Neurabin I and Neurabin II, Recruit Specific Isoforms of Protein<br>Phosphatase-1 Catalytic Subunits. Journal of Biological Chemistry, 2002, 277, 27716-27724.   | 3.4  | 79        |
| 111 | Vesicular Stomatitis Virus Infection Alters the elF4F Translation Initiation Complex and Causes<br>Dephosphorylation of the elF4E Binding Protein 4E-BP1. Journal of Virology, 2002, 76, 10177-10187. | 3.4  | 138       |
| 112 | Regulation of Synaptic Strength by Protein Phosphatase 1. Neuron, 2001, 32, 1133-1148.                                                                                                                | 8.1  | 209       |
| 113 | Growth Arrest and DNA Damage-Inducible Protein GADD34 Assembles a Novel Signaling Complex<br>Containing Protein Phosphatase 1 and Inhibitor 1. Molecular and Cellular Biology, 2001, 21, 6841-6850.   | 2.3  | 247       |
| 114 | Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II.<br>Nature Neuroscience, 2000, 3, 881-886.                                                             | 14.8 | 188       |
| 115 | Long-Term Potentiation Induced by Î, Frequency Stimulation Is Regulated by a Protein<br>Phosphatase-1-Operated Gate. Journal of Neuroscience, 2000, 20, 7880-7887.                                    | 3.6  | 87        |
| 116 | Cellular Mechanisms Regulating Protein Phosphatase-1. Journal of Biological Chemistry, 2000, 275, 18670-18675.                                                                                        | 3.4  | 53        |
| 117 | Neurofilament-L Is a Protein Phosphatase-1-binding Protein Associated with Neuronal Plasma<br>Membrane and Post-synaptic Density. Journal of Biological Chemistry, 2000, 275, 2439-2446.              | 3.4  | 57        |
| 118 | Importance of the β12-β13 Loop in Protein Phosphatase-1 Catalytic Subunit for Inhibition by Toxins and Mammalian Protein Inhibitors. Journal of Biological Chemistry, 1999, 274, 22366-22372.         | 3.4  | 77        |
| 119 | Molecular Determinants of Nuclear Protein Phosphatase-1 Regulation by NIPP-1. Journal of Biological Chemistry, 1999, 274, 14053-14061.                                                                | 3.4  | 88        |
| 120 | Gating of CaMKII by cAMP-Regulated Protein Phosphatase Activity During LTP. Science, 1998, 280,<br>1940-1943.                                                                                         | 12.6 | 392       |
| 121 | Inhibitor-1 Interaction Domain That Mediates the Inhibition of Protein Phosphatase-1. Journal of<br>Biological Chemistry, 1998, 273, 27716-27724.                                                     | 3.4  | 40        |
| 122 | Inhibitor-1, a Regulator of Protein Phosphatase 1 Function. , 1998, 93, 41-58.                                                                                                                        |      | 14        |
| 123 | Multiple Structural Elements Define the Specificity of Recombinant Human Inhibitor-1 as a Protein<br>Phosphatase-1 Inhibitor <sup>.</sup> . Biochemistry, 1996, 35, 5220-5228.                        | 2.5  | 161       |