Stela Pruneanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663874/publications.pdf

Version: 2024-02-01

293460 340414 1,712 63 24 39 citations h-index g-index papers 63 63 63 2776 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nitrogen-Doped Graphene-Based Sensor for Electrochemical Detection of Piroxicam, a NSAID Drug for COVID-19 Patients. Chemosensors, 2022, 10, 47.	1.8	7
2	Electrochemical L-Tyrosine Sensor Based on a Glassy Carbon Electrode Modified with Exfoliated Graphene. Sensors, 2022, 22, 3606.	2.1	5
3	Investigation of L-Tryptophan Electrochemical Oxidation with a Graphene-Modified Electrode. Biosensors, 2021, 11, 36.	2.3	8
4	Graphene-Gold Nanoparticles Nanozyme-Based Electrochemical Sensor with Enhanced Laccase-Like Activity for Determination of Phenolic Substrates. Journal of the Electrochemical Society, 2021, 168, 067523.	1.3	18
5	Hydrothermal Synthesis of Nitrogen, Boron Co-Doped Graphene with Enhanced Electro-Catalytic Activity for Cymoxanil Detection. Sensors, 2021, 21, 6630.	2.1	7
6	Evaluation of N-doped graphene role in the visible-light driven photodegradation of sulfamethoxazole by a TiO2-silver-graphene composite. Journal of Photochemistry and Photobiology A: Chemistry, 2021, , 113701.	2.0	2
7	Reviewâ€"Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. Journal of the Electrochemical Society, 2020, 167, 037528.	1.3	103
8	Cytotoxicity mechanisms of nitrogen-doped graphene obtained by electrochemical exfoliation of graphite rods, on human endothelial and colon cancer cells. Carbon, 2020, 158, 267-281.	5.4	28
9	Enantioanalysis of tryptophan in whole blood samples using stochastic sensors—A screening test for gastric cancer. Chirality, 2020, 32, 215-222.	1.3	16
10	Sensing and Interaction of His-Tagged CA19-9 Antigen with Graphene-Modified Electrodes. Chemosensors, 2020, 8, 112.	1.8	6
11	Photocatalytic and Electrocatalytic Properties of NGr-ZnO Hybrid Materials. Nanomaterials, 2020, 10, 1473.	1.9	12
12	Enantioanalysis of glutamine—a key factor in establishing the metabolomics process in gastric cancer. Analytical and Bioanalytical Chemistry, 2020, 412, 3199-3207.	1.9	24
13	Green synthesis, characterization and potential application of reduced graphene oxide. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 113971.	1.3	47
14	Graphene-based stochastic sensors for pattern recognition of gastric cancer biomarkers in biological fluids. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1365-1370.	0.4	13
15	Detection of 8-Hydroxy-2′-Deoxyguanosine Biomarker with a Screen-Printed Electrode Modified with Graphene. Sensors, 2019, 19, 4297.	2.1	8
16	A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Frontiers of Materials Science, 2019, 13, 23-32.	1.1	126
17	Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode. Analytical Letters, 2019, 52, 2583-2606.	1.0	29
18	Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions: Application to Sunset Yellow voltammetric detection. Microchemical Journal, 2019, 147, 112-120.	2.3	30

#	Article	IF	CITATIONS
19	Voltammetric determination of bisphenol A with a silver-reduced graphene oxide composite paste microsensor., 2019,,.		1
20	Exfoliation of graphite rods via pulses of current for graphene synthesis: Sensitive detection of 8-hydroxy- $2\hat{a}\in^2$ -deoxyguanosine. Talanta, 2019, 196, 182-190.	2.9	25
21	Graphene/TiO ₂ -Ag Based Composites Used as Sensitive Electrode Materials for Amaranth Electrochemical Detection and Degradation. Journal of the Electrochemical Society, 2018, 165, B3054-B3059.	1.3	17
22	Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry, 2018, 120, 94-103.	2.4	26
23	Sensitive detection of hydroquinone using exfoliated graphene-Au/glassy carbon modified electrode. Nanotechnology, 2018, 29, 095501.	1.3	14
24	Graphene-porphyrin composite synthesis through graphite exfoliation: The electrochemical sensing of catechol. Sensors and Actuators B: Chemical, 2018, 256, 665-673.	4.0	46
25	Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection. Electrochimica Acta, 2018, 283, 578-589.	2.6	62
26	Synthesis, morpho-structural properties and antibacterial effect of silicate-based composites containing graphene oxide/hydroxyapatite. Materials Chemistry and Physics, 2018, 217, 48-53.	2.0	35
27	Efficient photocatalytic removal of RhB using magnetic Fe3O4–SnO2 nanocomposites containing Sn2+ interstitial impurities. Journal of Materials Science: Materials in Electronics, 2018, 29, 14132-14143.	1.1	8
28	Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb ²⁺ detection. Nanotechnology, 2017, 28, 114001.	1.3	33
29	Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sciences, 2017, 70, 13-20.	1.5	79
30	Multimode microsensors based on Agâ \in "TiO $<$ sub $>2<$ /sub $>$ â \in "graphene materials used for the molecular recognition of carcinoembryonic antigen in whole blood samples. RSC Advances, 2017, 7, 28419-28426.	1.7	8
31	Molecular Recognition of Colon Cancer Biomarkers: P53, KRAS and CEA in Whole Blood Samples. Journal of the Electrochemical Society, 2017, 164, B443-B447.	1.3	17
32	Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts. Process Biochemistry, 2017, 52, 243-249.	1.8	12
33	Graphene–bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A. Nanotechnology, 2016, 27, 484001.	1.3	29
34	Photocatalytic performance of graphene/TiO2-Ag composites on amaranth dye degradation. Materials Chemistry and Physics, 2016, 179, 232-241.	2.0	64
35	Enhancement of peroxidase-like activity of N-doped graphene assembled with iron-tetrapyridylporphyrin. RSC Advances, 2016, 6, 79497-79506.	1.7	13
36	Charge transfer-resistance in nitrogen-doped/undoped graphene: Its influence on the electro-catalytic reduction of H 2 O 2. Electrochimica Acta, 2016, 220, 664-671.	2.6	9

#	Article	lF	CITATIONS
37	Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials. Talanta, 2016, 148, 511-517.	2.9	28
38	Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 2016, 6, 2651-2661.	1.7	114
39	Bio-Functionalized Metallic Nanoparticles with Applications in Medicine., 2016,, 803-817.		1
40	Electrochemical degradation of carbamazepine using modified electrode with graphene-AuAg composite. AIP Conference Proceedings, $2015, \ldots$	0.3	2
41	Electrochemical and spectroscopic studies of ssDNA damage induced by hydrogen peroxide using graphene based nanomaterials. Talanta, 2015, 138, 209-217.	2.9	7
42	Graphene based nanomaterials as chemical sensors for hydrogen peroxide – A comparison study of their intrinsic peroxidase catalytic behavior. Sensors and Actuators B: Chemical, 2015, 213, 474-483.	4.0	93
43	Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids and Surfaces B: Biointerfaces, 2015, 136, 791-798.	2.5	51
44	The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta, 2015, 154, 197-204.	2.6	101
45	Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites. International Journal of Nanomedicine, 2014, 9, 1111.	3.3	3
46	The study of adenine and guanine electrochemical oxidation using electrodes modified with graphene-platinum nanoparticles composites. Electrochimica Acta, 2014, 139, 386-393.	2.6	19
47	Electrochemical oxidation of adenine using platinum electrodes modified with carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 181-185.	1.3	9
48	Single-Step Synthesis of Gold Nanowires Using Biomolecules as Capping Agent/Template: Applications for Tissue Engineering. Particulate Science and Technology, 2013, 31, 658-662.	1.1	10
49	Electro-catalytic properties of graphene composites containing gold or silver nanoparticles. Electrochimica Acta, 2013, 89, 246-252.	2.6	26
50	Influence of chemical oxidation upon the electro-catalytic properties of graphene–gold nanoparticle composite. Electrochimica Acta, 2013, 91, 137-143.	2.6	16
51	Catalytic one-step synthesis of Pt-decorated few-layer graphenes. RSC Advances, 2013, 3, 26391.	1.7	17
52	Electrochemical oxidation of adenine on graphene-platinum nanoparticles modified electrode. , 2013, , .		0
53	Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine. International Journal of Nanomedicine, 2013, 8, 1429.	3.3	39
54	Application in Electrochemistry of Graphene-Modified Electrodes. Micro and Nanosystems, 2013, 5, 127-137.	0.3	4

#	Article	IF	CITATIONS
55	Nanostructures based on metallic nanoparticles and biomolecules. AIP Conference Proceedings, 2012,	0.3	2
56	Novel Multifunctional Graphene Sheets with Encased Au/Ag Nanoparticles for Advanced Electrochemical Analysis of Organic Compounds. ChemPhysChem, 2012, 13, 3632-3639.	1.0	19
57	Structural and electrochemical characterization of novel leucine–gold nanoparticles modified electrode. Electrochimica Acta, 2012, 63, 146-152.	2.6	6
58	Kinetic Determination of Drug Particles Concentration via Enzyme-Catalyzed Decomposition of Hydrogen Peroxide. Particulate Science and Technology, 2011, 29, 493-502.	1.1	1
59	Novel Graphene-Gold Nanoparticle Modified Electrodes for the High Sensitivity Electrochemical Spectroscopy Detection and Analysis of Carbamazepine. Journal of Physical Chemistry C, 2011, 115, 23387-23394.	1.5	79
60	Electrochemical investigation of atenolol oxidation and detection by using a multicomponent nanostructural assembly of amino acids and gold nanoparticles. Chemical Physics Letters, 2011, 504, 56-61.	1.2	25
61	Morphological and electrical characteristics of amino acid–AuNP nanostructured two-dimensional ensembles. Chemical Physics, 2010, 373, 295-299.	0.9	16
62	Manganese(III) Porphyrin-based Potentiometric Sensors for Diclofenac Assay in Pharmaceutical Preparations. Sensors, 2010, 10, 8850-8864.	2.1	36
63	A kinetic method for para-nitrophenol determination based on its inhibitory effect on the catalatic reaction of catalase. Open Chemistry, 2005, 3, 592-604.	1.0	1