Yohei Narita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6638675/publications.pdf Version: 2024-02-01

Υρηει Ναριτά

#	Article	IF	CITATIONS
1	Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nature Microbiology, 2019, 4, 404-413.	5.9	152
2	The Epstein-Barr Virus Regulome in Lymphoblastoid Cells. Cell Host and Microbe, 2017, 22, 561-573.e4.	5.1	89
3	Epstein-Barr Virus Deubiquitinase Downregulates TRAF6-Mediated NF-κB Signaling during Productive Replication. Journal of Virology, 2013, 87, 4060-4070.	1.5	83
4	A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication in B Cells. Cell Reports, 2017, 19, 1479-1493.	2.9	83
5	RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes. Journal of Virology, 2019, 93, .	1.5	71
6	Nuclear Transport of Epstein-Barr Virus DNA Polymerase Is Dependent on the BMRF1 Polymerase Processivity Factor and Molecular Chaperone Hsp90. Journal of Virology, 2013, 87, 6482-6491.	1.5	40
7	Pin1 Interacts with the Epstein-Barr Virus DNA Polymerase Catalytic Subunit and Regulates Viral DNA Replication. Journal of Virology, 2013, 87, 2120-2127.	1.5	39
8	Different Distributions of Epstein-Barr Virus Early and Late Gene Transcripts within Viral Replication Compartments. Journal of Virology, 2013, 87, 6693-6699.	1.5	35
9	Contribution of Myocyte Enhancer Factor 2 Family Transcription Factors to BZLF1 Expression in Epstein-Barr Virus Reactivation from Latency. Journal of Virology, 2013, 87, 10148-10162.	1.5	29
10	BGLF2 Increases Infectivity of Epstein-Barr Virus by Activating AP-1 upon De Novo Infection. MSphere, 2018, 3, .	1.3	26
11	Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells. Journal of Virology, 2020, 94, .	1.5	26
12	The Epstein-Barr Virus BDLF4 Gene Is Required for Efficient Expression of Viral Late Lytic Genes. Journal of Virology, 2015, 89, 10120-10124.	1.5	24
13	Primary effusion lymphoma enhancer connectome links super-enhancers to dependency factors. Nature Communications, 2020, 11, 6318.	5.8	21
14	RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology, 2021, 557, 44-54.	1,1	18
15	Histone Loaders CAF1 and HIRA Restrict Epstein-Barr Virus B-Cell Lytic Reactivation. MBio, 2020, 11, .	1.8	17
16	Interaction between Basic Residues of Epstein-Barr Virus EBNA1 Protein and Cellular Chromatin Mediates Viral Plasmid Maintenance. Journal of Biological Chemistry, 2013, 288, 24189-24199.	1.6	15
17	Epstein-Barr Virus Nuclear Antigen Leader Protein Coactivates EP300. Journal of Virology, 2018, 92, . 	1.5	15
18	Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. Journal of Virology, 2016, 90, 3873-3889.	1.5	14

Yohei Narita

#	Article	IF	CITATIONS
19	The Epstein–Barr virus BRRF2 gene product is involved in viral progeny production. Virology, 2015, 484, 33-40.	1.1	13
20	Genome-wide CRISPR-based gene knockout screens reveal cellular factors and pathways essential for nasopharyngeal carcinoma. Journal of Biological Chemistry, 2019, 294, 9734-9745.	1.6	12
21	Roles of Epstein-Barr virus BGLF3.5 gene and two upstream open reading frames in lytic viral replication in HEK293 cells. Virology, 2015, 483, 44-53.	1.1	11
22	A Herpesvirus Specific Motif of Epstein-Barr Virus DNA Polymerase Is Required for the Efficient Lytic Genome Synthesis. Scientific Reports, 2015, 5, 11767.	1.6	10
23	TAF Family Proteins and MEF2C Are Essential for Epstein-Barr Virus Super-Enhancer Activity. Journal of Virology, 2019, 93, .	1.5	10
24	The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Scientific Reports, 2017, 7, 6044.	1.6	9
25	Characterization of a Suppressive Cis-acting Element in the Epstein–Barr Virus LMP1 Promoter. Frontiers in Microbiology, 2017, 8, 2302.	1.5	3