Koro de la Caba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6638360/publications.pdf

Version: 2024-02-01

122 papers

6,767 citations

43 h-index 79 g-index

125 all docs

125 docs citations

125 times ranked

7535 citing authors

#	Article	IF	CITATIONS
1	Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 2017, 105, 1358-1368.	7.5	772
2	Functional properties of chitosan-based films. Carbohydrate Polymers, 2013, 93, 339-346.	10.2	356
3	Characterization and antimicrobial analysis of chitosan-based films. Journal of Food Engineering, 2013, 116, 889-899.	5.2	262
4	Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polymer Engineering and Science, 2008, 48, 297-306.	3.1	238
5	Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 2010, 101, 6836-6842.	9.6	224
6	FTIR characterization of protein–polysaccharide interactions in extruded blends. Carbohydrate Polymers, 2014, 111, 598-605.	10.2	185
7	Mechanical and thermal properties of soy protein films processed by casting and compression. Journal of Food Engineering, 2010, 100, 145-151.	5.2	165
8	Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocolloids, 2019, 86, 95-103.	10.7	162
9	Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids, 2017, 68, 192-198.	10.7	157
10	Functional properties of films based on soy protein isolate and gelatin processed by compression molding. Journal of Food Engineering, 2011, 105, 65-72.	5.2	137
11	Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose, 2010, 17, 661-669.	4.9	132
12	Extraction of agar from Gelidium sesquipedale (Rodhopyta) and surface characterization of agar based films. Carbohydrate Polymers, 2014, 99, 491-498.	10.2	120
13	Extrusion of soy protein with gelatin and sugars at low moisture content. Journal of Food Engineering, 2012, 110, 53-59.	5.2	117
14	Development and characterization of cassava starch films incorporated with blueberry pomace. International Journal of Biological Macromolecules, 2018, 106, 834-839.	7.5	110
15	Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polymer Engineering and Science, 2008, 48, 519-529.	3.1	103
16	Environmental assessment of chitosan-based films. Journal of Cleaner Production, 2013, 41, 312-318.	9.3	101
17	Characterization of soy protein-based films prepared with acids and oils by compression. Journal of Food Engineering, 2011, 107, 41-49.	5.2	99
18	Bio-based films prepared with by-products and wastes: environmental assessment. Journal of Cleaner Production, 2014, 64, 218-227.	9.3	98

#	Article	IF	Citations
19	Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids, 2018, 84, 313-320.	10.7	97
20	From seafood waste to active seafood packaging: An emerging opportunity of the circular economy. Journal of Cleaner Production, 2019, 208, 86-98.	9.3	97
21	Films based on proteins and polysaccharides: Preparation and physical–chemical characterization. European Polymer Journal, 2013, 49, 3713-3721.	5.4	94
22	Crosslinking of chitosan films processed by compression molding. Carbohydrate Polymers, 2019, 206, 820-826.	10.2	93
23	Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol. Thermochimica Acta, 2007, 459, 94-103.	2.7	92
24	Thermal and mechanical properties of soy protein films processed at different pH by compression. Journal of Food Engineering, 2010, 100, 261-269.	5 . 2	87
25	Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydrate Polymers, 2020, 237, 116159.	10.2	85
26	The versatility of collagen and chitosan: From food to biomedical applications. Food Hydrocolloids, 2021, 116, 106633.	10.7	83
27	Characterization of agar/soy protein biocomposite films: Effect of agar on the extruded pellets and compression moulded films. Carbohydrate Polymers, 2016, 151, 408-416.	10.2	79
28	Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Management, 2019, 88, 110-117.	7.4	78
29	Improvement of barrier properties of fish gelatin films promoted byÂgelatin glycation with lactose at high temperatures. LWT - Food Science and Technology, 2015, 63, 315-321.	5.2	77
30	Structure–property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. Journal of Applied Polymer Science, 2008, 108, 3092-3103.	2.6	74
31	Cross-linking of fish gelatins to develop sustainable films with enhanced properties. European Polymer Journal, 2016, 78, 82-90.	5.4	70
32	Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biology and Technology, 2015, 100, 142-150.	6.0	65
33	Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocolloids, 2021, 111, 106384.	10.7	64
34	Influence of cure schedule and stoichiometry on the dynamic mechanical behaviour of tetrafunctional epoxy resins cured with anhydrides. Polymer, 1996, 37, 2195-2200.	3.8	63
35	Mechanical properties–morphology relationships in nano-/microstructured epoxy matrices modified with PEO–PPO–PEO block copolymers. Polymer International, 2007, 56, 1392-1403.	3.1	59
36	Assessment of active chitosan films incorporated with gallic acid. Food Hydrocolloids, 2020, 101, 105486.	10.7	57

#	Article	IF	Citations
37	Ageing of chitosan films: Effect of storage time on structure and optical, barrier and mechanical properties. European Polymer Journal, 2015, 66, 170-179.	5.4	53
38	Kinetic and rheological studies of an unsaturated polyester cured with different catalyst amounts. Polymer, 1996, 37, 275-280.	3.8	51
39	Fish gelatin monolayer and bilayer films incorporated with epigallocatechin gallate: Properties and their use as pouches for storage of chicken skin oil. Food Hydrocolloids, 2019, 89, 783-791.	10.7	51
40	Effect of cross-linking in surface properties and antioxidant activity of gelatin films incorporated with a curcumin derivative. Food Hydrocolloids, 2017, 66, 168-175.	10.7	49
41	Development of chitosan films containing \hat{l}^2 -cyclodextrin inclusion complex for controlled release of bioactives. Food Hydrocolloids, 2020, 104, 105720.	10.7	49
42	The Effect of Cross-Linking with Citric Acid on the Properties of Agar/Fish Gelatin Films. Polymers, 2020, 12, 291.	4.5	48
43	Sustainable Fish Gelatin Films: from Food Processing Waste to Compost. ACS Sustainable Chemistry and Engineering, 2016, 4, 4626-4634.	6.7	47
44	Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics, 2019, 11, 314.	4.5	44
45	Horse mackerel (Trachurus trachurus) fillets biopreservation by using gallic acid and chitosan coatings. Food Control, 2021, 120, 107511.	5.5	44
46	Influence of molecular weight and chemical structure of soft segment in reaction kinetics of polycarbonate diols with 4,4′-diphenylmethane diisocyanate. European Polymer Journal, 2005, 41, 3051-3059.	5.4	43
47	Characterization of ribose-induced crosslinking extension in gelatin films. Food Hydrocolloids, 2020, 99, 105324.	10.7	43
48	Towards microphase separation in epoxy systems containing PEO/PPO/PEO block copolymers by controlling cure conditions and molar ratios between blocks. Part 2. Structural characterization. Colloid and Polymer Science, 2006, 284, 1419-1430.	2.1	41
49	Application of soy protein coatings and their effect on the quality and shelf-life stability of beef patties. RSC Advances, 2015, 5, 8182-8189.	3.6	41
50	Valorization of soya by-products for sustainable packaging. Journal of Cleaner Production, 2014, 64, 228-233.	9.3	40
51	Characterization of soybean protein concentrateâ€"stearic acid/palmitic acid blend edible films. Journal of Applied Polymer Science, 2012, 124, 1796-1807.	2.6	38
52	Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties. International Journal of Biological Macromolecules, 2018, 115, 955-960.	7.5	38
53	Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids, 2020, 105, 105792.	10.7	38
54	Preparation and characterization of soy protein thin films: Processing–properties correlation. Materials Letters, 2013, 105, 110-112.	2.6	37

#	Article	lF	Citations
55	Versatile soy protein films and hydrogels by the incorporation of \hat{l}^2 -chitin from squid pens (<i>Loligo</i> sp.). Green Chemistry, 2017, 19, 5923-5931.	9.0	37
56	Comparative study by DSC and FTIR techniques of an unsaturated polyester resin cured at different temperatures. Polymer International, 1998, 45, 333-338.	3.1	36
57	Effects of cross-linking in nanostructure and physicochemical properties of fish gelatins for bio-applications. Reactive and Functional Polymers, 2015, 94, 55-62.	4.1	36
58	Ultra thin hydro-films based on lactose-crosslinked fish gelatin for wound healing applications. International Journal of Pharmaceutics, 2017, 530, 455-467.	5.2	36
59	3D printed lactose-crosslinked gelatin scaffolds as a drug delivery system for dexamethasone. European Polymer Journal, 2019, 114, 90-97.	5.4	35
60	Tailoring soy protein film properties by selecting casting or compression as processing methods. European Polymer Journal, 2016, 85, 499-507.	5.4	34
61	Kinetic and rheological studies of two unsaturated polyester resins cured at different temperatures. European Polymer Journal, 1997, 33, 19-23.	5.4	31
62	ZnO nanoparticle-incorporated native collagen films with electro-conductive properties. Materials Science and Engineering C, 2020, 108, 110394.	7.3	30
63	Effect of pH and lactose on cross-linking extension and structure of fish gelatin films. Reactive and Functional Polymers, 2017, 117, 140-146.	4.1	28
64	Valorization of marine-derived biowaste to develop chitin/fish gelatin products as bioactive carriers and moisture scavengers. Science of the Total Environment, 2020, 706, 135747.	8.0	28
65	Properties of fish gelatin films containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids, 2019, 97, 105236.	10.7	27
66	Electrospinning of Fish Gelatin Solution Containing Citric Acid: An Environmentally Friendly Approach to Prepare Crosslinked Gelatin Fibers. Materials, 2019, 12, 2808.	2.9	26
67	Physicochemical and Biological Performance of Aloe Vera-Incorporated Native Collagen Films. Pharmaceutics, 2020, 12, 1173.	4.5	26
68	The influence of molecular weight and chemical structure of soft segment in reaction kinetics with tolyl isocyanate. European Polymer Journal, 2001, 37, 1685-1693.	5.4	25
69	Mimosa and chestnut tannin extracts reacted with hexamine in solution. Journal of Thermal Analysis and Calorimetry, 2009, 96, 515-521.	3 . 6	25
70	Fish gelatin films laminated with emulsified gelatin film or poly(lactic) acid film: Properties and their use as bags for storage of fried salmon skin. Food Hydrocolloids, 2021, 111, 106199.	10.7	24
71	Effect of citric acid on collagen sheets processed by compression. Food Hydrocolloids, 2020, 100, 105427.	10.7	23
72	Soy protein and chitin sponge-like scaffolds: from natural by-products to cell delivery systems for biomedical applications. Green Chemistry, 2020, 22, 3445-3460.	9.0	23

#	Article	IF	Citations
73	3D Printed Chitosan-Pectin Hydrogels: From Rheological Characterization to Scaffold Development and Assessment. Gels, 2021, 7, 175.	4.5	23
74	Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. International Journal of Biological Macromolecules, 2018, 117, 199-208.	7.5	22
75	Development and characterization of ribose-crosslinked gelatin products prepared by indirect 3D printing. Food Hydrocolloids, 2019, 96, 65-71.	10.7	22
76	Chicken feathers as a natural source of sulphur to develop sustainable protein films with enhanced properties. International Journal of Biological Macromolecules, 2018, 106, 523-531.	7. 5	21
77	Extraction and incorporation of bioactives into protein formulations for food and biomedical applications. International Journal of Biological Macromolecules, 2018, 120, 2094-2105.	7. 5	21
78	A more efficient process to develop protein films derived from agro-industrial by-products. Food Hydrocolloids, 2019, 86, 11-17.	10.7	21
79	Valorisation of fishery industry wastes to manufacture sustainable packaging films: modelling moisture-sorption behaviour. Journal of Cleaner Production, 2015, 91, 36-42.	9.3	18
80	Structure–moisture sorption relation in chitosan thin films. Materials Letters, 2014, 128, 125-127.	2.6	16
81	Injection-manufactured biocomposites from extruded soy protein with algae waste as a filler. Composites Part B: Engineering, 2016, 86, 197-202.	12.0	16
82	Physical and antioxidant properties of starch/gelatin films incorporated with Garcinia atroviridis leaves. Food Packaging and Shelf Life, 2020, 26, 100583.	7.5	16
83	Developing active and intelligent films through the incorporation of grape skin and seed tannin extracts into gelatin. Food Packaging and Shelf Life, 2022, 33, 100896.	7.5	16
84	Weathering behaviour of wood-faced construction materials. Construction and Building Materials, 2007, 21, 1288-1294.	7.2	15
85	Valorization of industrial by-products: development of active coatings to reduce food losses. Journal of Cleaner Production, 2015, 100, 179-184.	9.3	15
86	Assessment of gallic acid-modified fish gelatin formulations to optimize the mechanical performance of films. International Journal of Biological Macromolecules, 2018, 120, 2131-2136.	7.5	15
87	Storage stability of fish gelatin films by molecular modification or direct incorporation of oxidized linoleic acid: Comparative studies. Food Hydrocolloids, 2021, 113, 106481.	10.7	15
88	Evaluation of bioactive release kinetics from crosslinked chitosan films with Aloe vera. International Journal of Biological Macromolecules, 2021, 182, 1331-1338.	7.5	15
89	Fracture behavior-morphology relationships in an unsaturated polyester resin modified with a liquid oligomer. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1677-1685.	2.1	13
90	A novel approach to manufacture porous biocomposites using extrusion and injection moulding. European Polymer Journal, 2016, 82, 324-333.	5.4	13

#	Article	IF	Citations
91	Quality characteristics of fried fish crackers packaged in gelatin bags: Effect of squalene and storage time. Food Hydrocolloids, 2020, 99, 105378.	10.7	13
92	A Green Approach towards Native Collagen Scaffolds: Environmental and Physicochemical Assessment. Polymers, 2020, 12, 1597.	4.5	13
93	Optical and mechanical properties of thin films based on proteins. Materials Letters, 2014, 124, 286-288.	2.6	12
94	Influence of phenoxy addition on the curing kinetics for uncatalyzed and catalyzed cyanate ester resin. Journal of Applied Polymer Science, 2010, 118, 2869-2880.	2.6	11
95	Properties of chicken protein isolate/fish gelatin blend film incorporated with phenolic compounds and its application as pouch for packing chicken skin oil. Food Packaging and Shelf Life, 2021, 30, 100761.	7.5	11
96	Control of cross-linking reaction to tailor the properties of thin films based on gelatin. Materials Letters, 2016, 185, 366-369.	2.6	10
97	Effect of Fructose and Ascorbic Acid on the Performance of Cross-Linked Fish Gelatin Films. Polymers, 2020, 12, 570.	4.5	10
98	The Potential of Vegetal and Animal Proteins to Develop More Sustainable Food Packaging. , 2018, , 25-59.		9
99	Characterization of Bio-Inspired Electro-Conductive Soy Protein Films. Polymers, 2021, 13, 416.	4.5	9
100	Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 3648.	4.1	9
101	A comparative study of nanocomposites based on a recycled poly(methyl methacrylate) matrix containing several nanoclays. Polymer Composites, 2008, 29, 782-790.	4.6	8
102	Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas sp Marine Drugs, 2020, 18, 447.	4.6	8
103	Compression Molded Soy Protein Films with Exopolysaccharides Produced by Cider Lactic Acid Bacteria. Polymers, 2020, 12, 2106.	4.5	8
104	Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 2022, 252, 124943.	3.8	7
105	Polyhydroxybutyrate (PHB) produced from red grape pomace: Effect of purification processes on structural, thermal and antioxidant properties. International Journal of Biological Macromolecules, 2022, 217, 449-456.	7.5	6
106	Molecular Dynamics of PGA Bioabsorbable Polymer During Isothermal Cold Crystallization. Macromolecular Symposia, 2006, 239, 152-158.	0.7	5
107	Kinetics and Morphology of an Epoxy Resin Modified with PEO-PPO-PEO Block Copolymers. Macromolecular Symposia, 2006, 239, 30-35.	0.7	5
108	Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Materials Today Bio, 2022, 15, 100273.	5.5	5

#	Article	IF	CITATIONS
109	Rheokinetic and Dynamic Mechanical Analysis of Tetrafunctional Epoxy/anhydride Mixtures. Influence of Stoichiometry and Cure Conditions. High Performance Polymers, 2006, 18, 17-30.	1.8	3
110	Applications of Chitosan in Food Packaging. , 2017, , .		3
111	Plasma-Based Bioinks for Extrusion Bioprinting of Advanced Dressings. Biomedicines, 2021, 9, 1023.	3.2	2
112	The effect of temperature on the curing of unsaturated polyester resins modified with a liquid polymer. Macromolecular Symposia, 1997, 114, 271-277.	0.7	1
113	Properties of a Vinyl Ester Resin Modified with a Liquid Polymer. High Performance Polymers, 2005, 17, 605-616.	1.8	1
114	New algorithm for the elucidation of functional properties of gelatin-based materials. Computers and Chemical Engineering, 2021, 153, 107410.	3.8	1
115	Characteristics and seal ability of blend films based on chicken protein isolate and fish skin gelatin. Journal of Food Science and Technology, 0 , 1 .	2.8	1
116	3D-Printed Mucoadhesive Collagen Scaffolds as a Local Tetrahydrocurcumin Delivery System. Pharmaceutics, 2021, 13, 1697.	4.5	0
117	Arrain-hondakinak baloratzea, gazta ontziratzeko. Ekaia (journal), 2015, , 95-104.	0.0	0
118	Nola erabili azpiproduktuak eta hondakinak, propietate egokiak dituzten material jasangarriak garatzeko?. Ekaia (journal), 2016, , 93-104.	0.0	0
119	THE SUSTAINABILITY APPROACH IN THE MATERIALS ENGINEERING FIELD. , 2018, , .		0
120	Manufaktura metodoen eta saretze-erreakzioaren eragina gelatinazko materialen propietateetan. Ekaia (journal), 2019, , 71-84.	0.0	0
121	THE SUSTAINABILITY APPROACH IN FOOD SCIENCE AND TECHNOLOGY: CLOSING THE LOOP IN THE FOOD CHAIN. , 2019, , .		0
122	Properties and characteristics of salmon frame protein isolate films influenced by glycerol and squalene., 2022, 29, 676-685.		0