
Girish Choppala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6638245/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selenium Accumulation and Speciation in Chickpea (<i>Cicer arietinum</i>) Impacted by S in Soils: Potential for Biofortification. ACS Agricultural Science and Technology, 2022, 2, 135-143.	2.3	2
2	An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite. Journal of Hazardous Materials, 2022, 431, 128580.	12.4	8
3	Impact of Sulfur on Biofortification and Speciation of Selenium in Wheat Grain Grown in Selenium-Deficient Soils. Journal of Soil Science and Plant Nutrition, 2022, 22, 3243-3253.	3.4	2
4	Tooeleite Transformation and Coupled As(III) Mobilization Are Induced by Fe(II) under Anoxic, Circumneutral Conditions. Environmental Science & Technology, 2022, 56, 9446-9452.	10.0	2
5	Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. Journal of Hazardous Materials, 2021, 401, 123282.	12.4	94
6	Arsenic-Imposed Effects on Schwertmannite and Jarosite Formation in Acid Mine Drainage and Coupled Impacts on Arsenic Mobility. ACS Earth and Space Chemistry, 2021, 5, 1418-1435.	2.7	35
7	Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment. Ecotoxicology and Environmental Safety, 2021, 223, 112611.	6.0	16
8	Are root elongation assays suitable for establishing metallic anion ecotoxicity thresholds?. Journal of Hazardous Materials Letters, 2021, 2, 100024.	3.6	2
9	Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation. Journal of Hazardous Materials, 2020, 399, 123029.	12.4	29
10	A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Environmental Pollution, 2019, 247, 618-625.	7.5	24
11	Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution. Chemosphere, 2019, 222, 440-444.	8.2	21
12	Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation. Science of the Total Environment, 2019, 683, 399-410.	8.0	50
13	Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production. Journal of Environmental Management, 2019, 239, 73-83.	7.8	34
14	Dissolution and redistribution of trace elements and nutrients during dredging of iron monosulfide enriched sediments. Chemosphere, 2018, 201, 380-387.	8.2	19
15	Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. Journal of Geochemical Exploration, 2018, 184, 255-260.	3.2	103
16	Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Science of the Total Environment, 2018, 610-611, 1457-1466.	8.0	74
17	Impact of modified chitosan on pore water bioavailability of zinc in contaminated soils. Journal of Geochemical Exploration, 2018, 186, 94-99.	3.2	1
18	Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite. PLoS	2.5	21

GIRISH CHOPPALA

#	Article	IF	CITATIONS
19	Chromium(VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Science of the Total Environment, 2018, 640-641, 1424-1431.	8.0	52
20	Pyrogenic carbon in Australian soils. Science of the Total Environment, 2017, 586, 849-857.	8.0	13
21	Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environment International, 2017, 108, 103-118.	10.0	78
22	Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere, 2017, 184, 197-206.	8.2	127
23	Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation. Journal of Environmental Management, 2017, 186, 158-166.	7.8	15
24	Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As(V) and Cr(VI) in contaminated soils. Journal of Environmental Management, 2017, 186, 183-191.	7.8	30
25	Evaluation of modified chitosan for remediation of zinc contaminated soils. Journal of Geochemical Exploration, 2017, 182, 180-184.	3.2	18
26	Removal and Recovery of Metals by Biosorbents and Biochars Derived From Biowastes. , 2016, , 149-177.		18
27	Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 2016, 46, 1367-1401.	12.8	86
28	Sorption kinetics of zinc and nickel on modified chitosan. Environmental Monitoring and Assessment, 2016, 188, 507.	2.7	13
29	Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil. Environmental Science & Technology, 2016, 50, 13062-13069.	10.0	15
30	Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere, 2016, 144, 374-381.	8.2	116
31	Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environmental Science and Pollution Research, 2015, 22, 8969-8978.	5.3	73
32	Effect of Coal Combustion Products in Reducing Soluble Phosphorus in Soil II: Leaching Study. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	5
33	Phytocapping: An Alternative Technology for the Sustainable Management of Landfill Sites. Critical Reviews in Environmental Science and Technology, 2014, 44, 561-637.	12.8	50
34	Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Critical Reviews in Plant Sciences, 2014, 33, 374-391.	5.7	279
35	Phosphorus–arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Science of the Total Environment, 2013, 463-464, 1154-1162.	8.0	131
36	Comparative Sorption and Mobility of Cr(III) and Cr(VI) Species in a Range of Soils: Implications to Bioavailability. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	50

GIRISH CHOPPALA

#	Article	IF	CITATIONS
37	Potential of Novel Bacterial Consortium for the Remediation of Chromium Contamination. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	18
38	Comparative Sorption of Pb and Cd by Biochars and Its Implication for Metal Immobilization in Soils. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	104
39	Chromium Contamination and Its Risk Management in Complex Environmental Settings. Advances in Agronomy, 2013, 120, 129-172.	5.2	110
40	Chemodynamics of chromium reduction in soils: Implications to bioavailability. Journal of Hazardous Materials, 2013, 261, 718-724.	12.4	39
41	Microbial Transformation of Trace Elements in Soils in Relation to Bioavailability and Remediation. Reviews of Environmental Contamination and Toxicology, 2013, 225, 1-56.	1.3	41
42	Differential effect of coal combustion products on the bioavailability of phosphorus between inorganic and organic nutrient sources. Journal of Hazardous Materials, 2013, 261, 817-825.	12.4	9
43	The Influence of Biochar and Black Carbon on Reduction and Bioavailability of Chromate in Soils. Journal of Environmental Quality, 2012, 41, 1175-1184.	2.0	171
44	Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Science of the Total Environment, 2012, 424, 264-270.	8.0	126
45	Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 2011, 348, 439-451.	3.7	902
46	Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 2011, 185, 549-574.	12.4	750