Yanhui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637923/publications.pdf

Version: 2024-02-01

36 7,132 27
papers citations h-index

36 36 36 8510 all docs docs citations times ranked citing authors

36

g-index

#	Article	IF	CITATIONS
1	TiO ₂ â°'Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO ₂ â°'Graphene Truly Different from Other TiO ₂ â°'Carbon Composite Materials?. ACS Nano, 2010, 4, 7303-7314.	7. 3	1,559
2	Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 2012, 4, 5792.	2.8	883
3	Engineering the Unique 2D Mat of Graphene to Achieve Graphene-TiO ₂ Nanocomposite for Photocatalytic Selective Transformation: What Advantage does Graphene Have over Its Forebear Carbon Nanotube?. ACS Nano, 2011, 5, 7426-7435.	7. 3	662
4	Graphene Transforms Wide Band Gap ZnS to a Visible Light Photocatalyst. The New Role of Graphene as a Macromolecular Photosensitizer. ACS Nano, 2012, 6, 9777-9789.	7.3	642
5	Assembly of CdS Nanoparticles on the Two-Dimensional Graphene Scaffold as Visible-Light-Driven Photocatalyst for Selective Organic Transformation under Ambient Conditions. Journal of Physical Chemistry C, 2011, 115, 23501-23511.	1.5	333
6	Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chemical Science, 2013, 4, 1820.	3.7	313
7	Constructing Ternary CdS–Graphene–TiO ₂ Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation. Journal of Physical Chemistry C, 2012, 116, 18023-18031.	1.5	306
8	Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Physical Chemistry Chemical Physics, 2012, 14, 9167.	1.3	277
9	Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary Câ€"H bonds under ambient conditions. Chemical Science, 2012, 3, 2812.	3.7	229
10	Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Applied Catalysis B: Environmental, 2011, 106, 445-452.	10.8	209
11	Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr(VI) in water. Applied Catalysis B: Environmental, 2013, 140-141, 598-607.	10.8	202
12	A critical and benchmark comparison on graphene-, carbon nanotube-, and fullerene-semiconductor nanocomposites as visible light photocatalysts for selective oxidation. Journal of Catalysis, 2013, 299, 210-221.	3.1	166
13	Graphene Oxide Directed One-Step Synthesis of Flowerlike Graphene@HKUST-1 for Enzyme-Free Detection of Hydrogen Peroxide in Biological Samples. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32477-32487.	4.0	135
14	A facile and high-yield approach to synthesize one-dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants. RSC Advances, 2011, 1, 1772.	1.7	119
15	Visible-Light-Driven Oxidation of Primary C–H Bonds over CdS with Dual Co-catalysts Graphene and TiO2. Scientific Reports, 2013, 3, 3314.	1.6	116
16	Composites of Titanate Nanotube and Carbon Nanotube as Photocatalyst with High Mineralization Ratio for Gas-Phase Degradation of Volatile Aromatic Pollutant. Journal of Physical Chemistry C, 2011, 115, 7880-7886.	1.5	115
17	Graphene Oxide as a Surfactant and Support for In-Situ Synthesis of Au–Pd Nanoalloys with Improved Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2014, 118, 5299-5308.	1.5	97
18	Tuning the Optical Property and Photocatalytic Performance of Titanate Nanotube toward Selective Oxidation of Alcohols under Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1512-1520.	4.0	93

#	Article	IF	Citations
19	Bi ₂ WO ₆ : A highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Advances, 2014, 4, 2904-2910.	1.7	87
20	A Unique Silk Mat-Like Structured Pd/CeO ₂ as an Efficient Visible Light Photocatalyst for Green Organic Transformation in Water. ACS Sustainable Chemistry and Engineering, 2013, 1, 1258-1266.	3.2	74
21	Synthesis of Titanate Nanotube–CdS Nanocomposites with Enhanced Visible Light Photocatalytic Activity. Inorganic Chemistry, 2013, 52, 11758-11766.	1.9	74
22	Facile one-pot fabrication of Ag@MOF(Ag) nanocomposites for highly selective detection of 2,4,6-trinitrophenol in aqueous phase. Talanta, 2017, 170, 146-151.	2.9	69
23	New insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide. Nanoscale, 2015, 7, 7030-7034.	2.8	62
24	One-pot, high-yield synthesis of one-dimensional ZnO nanorods with well-defined morphology as a highly selective photocatalyst. RSC Advances, 2013, 3, 5956.	1.7	55
25	Graphene–TiO2 nanocomposite photocatalysts for selective organic synthesis in water under simulated solar light irradiation. RSC Advances, 2014, 4, 15264.	1.7	45
26	Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO ₂ . Physical Chemistry Chemical Physics, 2017, 19, 7307-7315.	1.3	44
27	Sol-gel entrapped visible light photocatalysts for selective conversions. RSC Advances, 2014, 4, 18341-18346.	1.7	38
28	Synthesis of MIL-101(Fe)/SiO2 composites with improved catalytic activity for reduction of nitroaromatic compounds. Journal of Solid State Chemistry, 2020, 283, 121150.	1.4	27
29	Defects enhanced photoluminescence of Mn2+-doped ZrP2O7 blue LLP materials. Journal of Alloys and Compounds, 2019, 789, 375-380.	2.8	24
30	The surface plasmon resonance, thermal, support and size effect induced photocatalytic activity enhancement of Au/reduced graphene oxide for selective oxidation of benzylic alcohols. Physical Chemistry Chemical Physics, 2017, 19, 31389-31398.	1.3	17
31	Composite of Au-Pd nanoalloys/reduced graphene oxide toward catalytic selective organic transformation to fine chemicals. Chemical Physics Letters, 2018, 691, 61-67.	1.2	17
32	Inhibiting Pd nanoparticle aggregation and improving catalytic performance using one-dimensional CeO2 nanotubes as support. Chinese Journal of Catalysis, 2013, 34, 1123-1127.	6.9	13
33	Simultaneous catalytic reduction of $\langle i \rangle p \langle i \rangle$ -nitrophenol and hydrogen production on MIL-101(Fe)-based composites. New Journal of Chemistry, 2021, 45, 3120-3127.	1.4	11
34	Efficient thermal- and photocatalysts made of Au nanoparticles on MgAl-layered double hydroxides for energy and environmental applications. Physical Chemistry Chemical Physics, 2019, 21, 21798-21805.	1.3	8
35	Synthesis of TiO2/MOF-801(Zr) by a wet impregnation at room temperature for highly efficient photocatalytic reduction of Cr(â¥). Solid State Sciences, 2022, 129, 106912.	1.5	6
36	A facile approach to synthesize CdS–attapulgite as a photocatalyst for reduction reactions in water. RSC Advances, 2021, 11, 27003-27010.	1.7	5

3