Pietro Laneve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637730/publications.pdf

Version: 2024-02-01

34 papers

3,783 citations

331538
21
h-index

34 g-index

34 all docs

34 docs citations

34 times ranked 5711 citing authors

#	Article	IF	CITATIONS
1	A multifunctional locus controls motor neuron differentiation through short and long noncoding RNAs. EMBO Journal, 2022, 41, .	3.5	8
2	Identification and Functional Characterization of Novel MYC-Regulated Long Noncoding RNAs in Group 3 Medulloblastoma. Cancers, 2021, 13, 3853.	1.7	4
3	RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. International Journal of Molecular Sciences, 2021, 22, 10285.	1.8	18
4	HOTAIRM1 regulates neuronal differentiation by modulating NEUROGENIN 2 and the downstream neurogenic cascade. Cell Death and Disease, 2020, 11 , 527 .	2.7	28
5	The Non-coding Side of Medulloblastoma. Frontiers in Cell and Developmental Biology, 2020, 8, 275.	1.8	9
6	Cross Interaction between M2 Muscarinic Receptor and Notch1/EGFR Pathway in Human Glioblastoma Cancer Stem Cells: Effects on Cell Cycle Progression and Survival. Cells, 2020, 9, 657.	1.8	20
7	Long Noncoding RNAs: Emerging Players in Medulloblastoma. Frontiers in Pediatrics, 2019, 7, 67.	0.9	8
8	Characterization of the lncRNA transcriptome in mESC-derived motor neurons: Implications for FUS-ALS. Stem Cell Research, 2018, 27, 172-179.	0.3	27
9	A Regulatory Circuitry Between Gria2, miR-409, and miR-495 Is Affected by ALS FUS Mutation in ESC-Derived Motor Neurons. Molecular Neurobiology, 2018, 55, 7635-7651.	1.9	32
10	Mir-34a-5p Mediates Cross-Talk between M2 Muscarinic Receptors and Notch-1/EGFR Pathways in U87MG Glioblastoma Cells: Implication in Cell Proliferation. International Journal of Molecular Sciences, 2018, 19, 1631.	1.8	22
11	Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration. Scientific Reports, 2017, 7, 41559.	1.6	8
12	Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Molecular Cell, 2017, 66, 22-37.e9.	4.5	1,672
13	FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nature Communications, 2017, 8, 14741.	5.8	403
14	The long noncoding RNA linc-NeD125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget, 2017, 8, 31003-31015.	0.8	56
15	ALS mutant FUS proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived motoneurons. DMM Disease Models and Mechanisms, 2015, 8, 755-66.	1.2	121
16	The <i>Drosophila</i> fragile X mental retardation protein participates in the piRNA pathway. Journal of Cell Science, 2015, 128, 2070-2084.	1.2	31
17	Identification of linc-NeD125, a novel long non coding RNA that hosts miR-125b-1 and negatively controls proliferation of human neuroblastoma cells. RNA Biology, 2015, 12, 1323-1337.	1.5	23
18	Interlocked loops trigger lineage specification and stable fates in the Drosophila nervous system. Nature Communications, 2014, 5, 4484.	5.8	16

#	Article	IF	CITATIONS
19	Mir-23a and mir-125b regulate neural stem/progenitor cell proliferation by targeting Musashi1. RNA Biology, 2014, 11, 1105-1112.	1.5	32
20	Enhanced Northern Blot Detection of Small RNA Species in Drosophila Melanogaster . Journal of Visualized Experiments, 2014, , .	0.2	4
21	TDP-43 Regulates the Microprocessor Complex Activity During In Vitro Neuronal Differentiation. Molecular Neurobiology, 2013, 48, 952-963.	1.9	59
22	The Gcm/Glide molecular and cellular pathway: New actors and new lineages. Developmental Biology, 2013, 375, 65-78.	0.9	16
23	A New Module in Neural Differentiation Control: Two MicroRNAs Upregulated by Retinoic Acid, miR-9 and -103, Target the Differentiation Inhibitor ID2. PLoS ONE, 2012, 7, e40269.	1.1	63
24	Identification of Smallâ€Molecule Inhibitors of the XendoU Endoribonucleases Family. ChemMedChem, 2011, 6, 1797-1805.	1.6	8
25	Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia. Development (Cambridge), 2011, 138, 4167-4178.	1.2	22
26	A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Research, 2010, 38, 6895-6905.	6.5	110
27	MicroRNA profiling in human medulloblastoma. International Journal of Cancer, 2009, 124, 568-577.	2.3	278
28	Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO Journal, 2008, 27, 2616-2627.	3.5	303
29	The Tumor Marker Human Placental Protein 11 Is an Endoribonuclease. Journal of Biological Chemistry, 2008, 283, 34712-34719.	1.6	42
30	The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7957-7962.	3.3	141
31	Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 298-301.	0.7	19
32	The structure of the endoribonuclease XendoU: From small nucleolar RNA processing to severe acute respiratory syndrome coronavirus replication. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12365-12370.	3.3	51
33	Functional Characterization of XendoU, the Endoribonuclease Involved in Small Nucleolar RNA Biosynthesis*. Journal of Biological Chemistry, 2005, 280, 18996-19002.	1.6	48
34	Purification, Cloning, and Characterization of XendoU, a Novel Endoribonuclease Involved in Processing of Intron-encoded Small Nucleolar RNAs in Xenopus laevis. Journal of Biological Chemistry, 2003, 278, 13026-13032.	1.6	81