
Inna A Malyshkina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and synthesis of new anionic "polymeric ionic liquids―with high charge delocalization. Polymer Chemistry, 2011, 2, 2609.	3.9	96
2	The influence of ionic liquid's nature on free radical polymerization of vinyl monomers and ionic conductivity of the obtained polymeric materials. Polymers for Advanced Technologies, 2007, 18, 50-63.	3.2	92
3	Polymeric Ionic Liquids: Comparison of Polycations and Polyanions. Macromolecules, 2011, 44, 9792-9803.	4.8	84
4	Bis(trifluoromethylsulfonyl)amide based "polymeric ionic liquids― Synthesis, purification and peculiarities of structure–properties relationships. Electrochimica Acta, 2011, 57, 74-90.	5.2	84
5	Cyclopolymerization of <i>N</i> , <i>N</i> -Dipropargylamines and <i>N</i> , <i>N</i> -Dipropargyl Ammonium Salts. Macromolecules, 2008, 41, 1919-1928.	4.8	67
6	Conductive Polymer Electrolytes Derived from Poly(norbornene)s with Pendant Ionic Imidazolium Moieties. Macromolecular Chemistry and Physics, 2008, 209, 40-51.	2.2	62
7	Ionic IPNs as novel candidates for highly conductive solid polymer electrolytes. Journal of Polymer Science Part A, 2009, 47, 4245-4266.	2.3	56
8	Synthesis and properties of polymeric analogs of ionic liquids. Polymer Science - Series B, 2013, 55, 122-138.	0.8	46
9	Dielectric relaxation in vinylidene fluoride–hexafluoropropylene copolymers. Journal of Applied Polymer Science, 2007, 105, 1101-1117.	2.6	42
10	Influence of anion structure on ion dynamics in polymer gel electrolytes composed of poly(ionic) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50 42
11	Photopolymerization of poly(ethylene glycol) dimethacrylates: The influence of ionic liquids on the formulation and the properties of the resultant polymer materials. Journal of Polymer Science Part A, 2010, 48, 2388-2409.	2.3	36
12	Synthesis and ionic conductivity of polymer ionic liquids. Polymer Science - Series A, 2007, 49, 256-261.	1.0	29
13	New ionic liquids with hydrolytically stable anions as alternatives to hexafluorophosphate and tetrafluoroborate salts in the free radical polymerization and preparation of ion-conducting composites. Polymer Journal, 2011, 43, 126-135.	2.7	28
14	Solid-state electrolytes based on ionic network polymers. Polymer Science - Series B, 2014, 56, 164-177.	0.8	22
15	Polymers based on ionic monomers with side phosphonate groups. Polymer Science - Series B, 2010, 52, 316-326.	0.8	21
16	Peculiarities of dielectric relaxation in poly(vinylidene fluoride) with different thermal history. Journal of Non-Crystalline Solids, 2007, 353, 4443-4447.	3.1	20

17	Thiolâ€Ene Click Chemistry as a Tool for a Novel Family of Polymeric Ionic Liquids. Macromolecular Chemistry and Physics, 2012, 213, 1359-1369.	2.2	19
	Polymerization of the new doubleâ€charged monomer		

bisâ€1,3(<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N,<i>N</li

Inna A Malyshkina

#	Article	IF	CITATIONS
19	New superprotonic crystals with dynamically disordered hydrogen bonds: cation replacements as the alternative to temperature increase. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 1105-1113.	1.1	16
20	Peculiarities of high-temperature dielectric relaxation in vinylidene fluoride – hexafluoropropylene copolymers. Journal of Non-Crystalline Solids, 2010, 356, 564-567.	3.1	14
21	Influence of parameters of molecular mobility on formation of structure in ferroelectric vinylidene fluoride copolymers. Journal of Applied Physics, 2015, 117, .	2.5	13
22	An effect of the electrode material on space charge relaxation in ferroelectric copolymers of vinylidene fluoride. Journal of Applied Physics, 2015, 118, .	2.5	11
23	Self-assembly of Li single-ion-conducting block copolymers for improved conductivity and viscoelastic properties. Electrochimica Acta, 2022, 413, 140126.	5.2	11
24	The dehydrogenation of isopropanol on a nickel-manganese catalyst subjected to treatment in glow-discharge oxygen, argon, and hydrogen plasmas. Russian Journal of Physical Chemistry A, 2008, 82, 50-55.	0.6	10
25	Local piezoelectric response, structural and dynamic properties of ferroelectric copolymers of vinylidene fluoride–tetrafluoroethylene. Colloid and Polymer Science, 2015, 293, 533-543.	2.1	10
26	Low-Frequency Dielectric Spectra of Rochelle Salt and Its Deuterated Analog in the Range 260–315 K. Inorganic Materials, 2002, 38, 380-384.	0.8	9
27	Investigation into the dielectric relaxation of vinylidene fluoride copolymers with hexafluoropropylene. Physics of the Solid State, 2006, 48, 1197-1199.	0.6	8
28	The role of water in the anomalies of pyro- and thermodepolarization properties of pyroactive polymer films at stepwise heating. Journal of Non-Crystalline Solids, 2018, 483, 60-64.	3.1	8
29	Dielectric Response of Holmium Formate Crystallohydrate at 100mHz–10MHz. Ferroelectrics, 2015, 478, 88-95.	0.6	7
30	Dielectric relaxation anomalies in polyacrylic acid and their relationship with "critical―points of water. Ferroelectrics, 2016, 504, 3-14.	0.6	7
31	Effect of change in the physical properties of water at its peculiar temperature points on the dielectric behavior of sodium polyacrylate. Polymer Science - Series A, 2016, 58, 33-41.	1.0	7
32	The Influence of Changes in the Structure of Hydrogen Bonds of Water on the Electrophysical Properties of Matrix–Water Systems in Stepwise Heating. Moscow University Physics Bulletin (English) Tj ETQ	q0 0.0 rgB	T /Øverlock 1
33	Structural aspects of the high-temperature space charge relaxation in ferroelectric VDF/TFE 94/6 copolymer. Ferroelectrics, 2018, 531, 1-21.	0.6	7
34	Electrochromic behavior and electrical percolation threshold of carbon nanotube/poly(pyridinium) Tj ETQq0 0 0 i	rgBŢ ¦Over 3.8	lock 10 Tf 50
35	Dielectric Properties and Conductivity of (K,NH4)3H(SO4)2 Single Crystals at Low Potassium Concentrations. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq1 1 0.	78 43 414 rg	gBT7/Overlock
36	Effect of recrystallization on the molecular mobility of a copolymer of vinylidene fluoride and hexafluoropropylene. Journal of Applied Polymer Science, 2011, 120, 13-20.	2.6	6

Inna A Malyshkina

#	Article	IF	CITATIONS
37	The Changes of Thermal, Dielectric, and Optical Properties at Insertion of Small Concentrations of Ammonium to K3H(SO4)2 Crystals. Crystallography Reports, 2018, 63, 553-562.	0.6	6
38	The effect of crystal polymorphism of ferroelectric copolymer vinylidene fluorideâ€hexafluoropropylene on its highâ€voltage polarization. Journal of Applied Polymer Science, 2020, 137, 49235.	2.6	6
39	Hydrogen bond as a trigger of ferroelectric-like phase transition in lithium-thallium tartrate monohydrate. Ferroelectrics, 2021, 582, 1-11.	0.6	6
40	Investigation of the mobility in poly(vinylidene fluoride) ferroelectric films with different structures. Physics of the Solid State, 2010, 52, 1976-1984.	0.6	5
41	On the features of cooperative mobility in the amorphous phase of ferroelectric polymers. Colloid and Polymer Science, 2019, 297, 513-520.	2.1	5
42	Structure formation and electrophysical properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 and Polymer Science, 2022, 300, 721-732.	Td (fluoric 2.1	le-hexafluoro 5
43	Low-Frequency Dielectric Properties of the Rochelle Salt and its Deuterated Analogue. Ferroelectrics, 2002, 268, 41-46.	0.6	4
44	Interaction of polymer matrix and bound water in poly(N-vinylcaprolaktam) films. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2008, 63, 410-415.	0.4	4
45	The role of hydrogen bonds in anomalies of dielectric properties of Diglycine Nitrate and Triglycine Tellurate. Ferroelectrics, 2017, 507, 172-185.	0.6	4
46	Curie point and a space charge relaxation in ferroelectric poly(vinylidene fluorideâ€trifluoroethylene) copolymers with different thermal history. Journal of Applied Polymer Science, 2018, 135, 46186.	2.6	4
47	Peculiarities of structure and dielectric relaxation in ferroelectric vinylidene fluoride-tetrafluoroethylene copolymer at different crystallization conditions. Colloid and Polymer Science, 2020, 298, 1169-1178.	2.1	4
48	Thermally Stimulated Depolarization Currents in TGS Crystals with Impurities and Radiation Defects under Stepwise Heating. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq0 0 0 rgBT /0	Dv er.k ock 1	0 ¥f 50 297 1
49	A special role of water in dielectrics of different structural organization. Ferroelectrics, 2021, 585, 40-51.	0.6	4
50	Dielectric spectroscopy study of poly(methacrylic acid) gels. Macromolecular Symposia, 2001, 170, 91-98.	0.7	3
51	Negative dielectric permittivity of poly(acrylic acid) pressed pellets. Journal of Non-Crystalline Solids, 2016, 452, 1-8.	3.1	3
52	Molecular mobility and structuring in textured films of the ferroelectric copolymer of vinylidene fluoride with tetrafluoroethylene. Polymer Science - Series A, 2016, 58, 345-356.	1.0	3
53	Polyethylene–Silica Nanocomposites with the Structure of Semiâ€Interpenetrating Networks. Macromolecular Materials and Engineering, 2019, 304, 1900430.	3.6	3
54	On the dispersion of dielectric properties of BaTiO3 single crystals grown by a top-seeded solution growth technique. Ferroelectrics, 2016, 493, 151-164.	0.6	2

INNA A MALYSHKINA

#	Article	IF	CITATIONS
55	Short-term fluctuations of BaTiO3 dielectric dispersion. Ferroelectrics, 2017, 515, 92-100.	0.6	2
56	On the nature of hysteresis phenomena at low-voltage polarization of crystalline ferroelectric polymers. Ferroelectrics, 2018, 537, 173-180.	0.6	2
57	Low-frequency dielectric dispersion and electrical properties of monoclinic tellurium acid ammonium phosphate crystals. Ferroelectrics, 1998, 214, 181-189.	0.6	1
58	Low-frequency dielectric properties and conductivity of a polyvinylcaprolactam-water system. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta,) Tj ETQq0 0 0 rgBT	O µerlock	≀110 Tf 50 61
59	Short-term reversible changes in the dielectric dispersion of a barium titanate single crystal. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2016, 71, 400-404.	0.4	1
60	On the metastable phase in BaTiO ₃ single crystals. Ferroelectrics, 2020, 554, 11-20.	0.6	1
61	Dielectric spectroscopy of ferroelectric polymers. , 2022, , 263-355.		1
62	Electrochemical impedance spectroscopic study of perfluorovinyl ether copolymer with tetrafluoroethylene in the swollen state. Polymer Science - Series B, 2007, 49, 213-216.	0.8	0
63	Polycaproamide films containing ionic liquids: Microstructure and properties. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 211-216.	0.6	0
64	Influence of Dipolar Interactions in Ferroelectric Vinylidene Fluoride Copolymers on their Structure and Low-Temperature Molecular Mobility. Key Engineering Materials, 2014, 605, 503-506.	0.4	0
65	Unusual Dielectric Properties of Electrochromic Polydipyridinium Triflate Composites with Carbon Nanotubes. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq1 1 0.7843	14orgBT /C	Dv e rlock 10
66	The replacements in the cation sublattice in superprotonic crystals. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1257-C1257.	0.1	0