Joaquim G Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimation of wind storm impacts overWestern Germany under future climate conditions using a statistical–dynamical downscaling approach. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 62, 188.	1.7	63
2	Wind gust estimation for Mid-European winter storms: towards a probabilistic view. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 17471.	1.7	40
3	Development of a wind gust model to estimate gust speeds and their return periods. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 66, 22905.	1.7	15
4	Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 67, 26032.	1.7	18
5	Robustness of serial clustering of extratropical cyclones to the choice of tracking method. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 32204.	1.7	16
6	Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 29199.	1.7	15
7	Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 29391.	1.7	79
8	A Global Climatology of Explosive Cyclones using a Multi-Tracking Approach. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1611340.	1.7	30
9	Skill and added value of the MiKlip regional decadal prediction system for temperature over Europe. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1618678.	1.7	13
10	Dynamics and predictability of cold spells over the Eastern Mediterranean. Climate Dynamics, 2022, 58, 2047-2064.	3.8	19
11	Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 66, 23966.	1.7	42
12	Evaluation of moisture sources for the Central European summer flood of May/June 2013 based on regional climate model simulations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 29288.	1.7	15
13	Potential Links Between Tropospheric and Stratospheric Circulation Extremes During Early 2020. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
14	Brief communication: Key papers of 20Âyears in <i>Natural Hazards and Earth System Sciences</i> . Natural Hazards and Earth System Sciences, 2022, 22, 985-993.	3.6	0
15	Adaptation and application of the large LAERTES-EU regional climate model ensemble for modeling hydrological extremes: a pilot study for the Rhine basin. Natural Hazards and Earth System Sciences, 2022, 22, 677-692.	3.6	5
16	Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review. Weather and Climate Dynamics, 2022, 3, 305-336.	3.5	79
17	Recurrence of Drought Events Over Iberia. Part I: Methodology and Application for Present Climate Conditions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 74, 222.	1.7	8
18	Extreme weather and societal impacts in the eastern Mediterranean. Earth System Dynamics, 2022, 13, 749-777.	7.1	34

#	Article	IF	CITATIONS
19	Recurrence of Drought Events Over Iberia. Part II: Future Changes Using Regional Climate Projections. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 74, 262.	1.7	6
20	Understanding summer wind systems over the eastern Mediterranean in a highâ€resolution climate simulation. International Journal of Climatology, 2022, 42, 8112-8131.	3.5	2
21	lce-free tropical waterbelt for Snowball Earth events questioned by uncertain clouds. Nature Geoscience, 2022, 15, 489-493.	12.9	5
22	The relationship between cyclonic weather regimes and seasonal influenza over the Eastern Mediterranean. Science of the Total Environment, 2021, 750, 141686.	8.0	9
23	Changes in the characteristics of â€~wet' and â€~dry' Red Sea Trough over the Eastern Mediterranean in CMIP5 climate projections. Theoretical and Applied Climatology, 2021, 143, 781-794.	2.8	10
24	Using seasonal rainfall clusters to explain the interannual variability of the rain belt over the Greater Horn of Africa. International Journal of Climatology, 2021, 41, E1717.	3.5	7
25	The regional MiKlip decadal prediction system for Europe: Hindcast skill for extremes and userâ€oriented variables. International Journal of Climatology, 2021, 41, E1944.	3.5	5
26	A review of past changes in extratropical cyclones in the northern hemisphere and what can be learned for the future. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, .	8.1	15
27	A ranking of concurrent precipitation and wind events for the Iberian Peninsula. International Journal of Climatology, 2021, 41, 1421-1437.	3.5	27
28	A new view of heat wave dynamics and predictability over the eastern Mediterranean. Earth System Dynamics, 2021, 12, 133-149.	7.1	17
29	The damaging tornado in <scp>Luxembourg</scp> on 9Â <scp>August</scp> 2019: towards better operational forecasts. Weather, 2021, 76, 264-271.	0.7	2
30	Nonlinear plant–plant interactions modulate impact of extreme drought and recovery on a Mediterranean ecosystem. New Phytologist, 2021, 231, 1784-1797.	7.3	14
31	Tropical cloud-radiative changes contribute to robust climate change-induced jet exit strengthening over Europe during boreal winter. Environmental Research Letters, 2021, 16, 084041.	5.2	3
32	Do Atlanticâ€European Weather Regimes Physically Exist?. Geophysical Research Letters, 2021, 48, e2021GL095574.	4.0	22
33	Guidelines for Studying Diverse Types of Compound Weather and Climate Events. Earth's Future, 2021, 9, e2021EF002340.	6.3	66
34	A new perspective on permafrost boundaries in France during the Last Glacial Maximum. Climate of the Past, 2021, 17, 2559-2576.	3.4	10
35	Climate change projections for olive yields in the Mediterranean Basin. International Journal of Climatology, 2020, 40, 769-781.	3.5	55
36	North Atlantic Integrated Water Vapor Transport—From 850 to 2100 CE: Impacts on Western European Rainfall. Journal of Climate, 2020, 33, 263-279.	3.2	26

#	Article	IF	CITATIONS
37	The role of secondary cyclones and cyclone families for the North Atlantic storm track and clustering over western Europe. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1184-1205.	2.7	12
38	Regionally Coupled Atmosphereâ€Oceanâ€Marine Biogeochemistry Model ROM: 2. Studying the Climate Change Signal in the North Atlantic and Europe. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001646.	3.8	25
39	Impact Forecasting to Support Emergency Management of Natural Hazards. Reviews of Geophysics, 2020, 58, e2020RG000704.	23.0	93
40	Serial clustering of extratropical cyclones: a review of where, when and why it occurs. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	38
41	Extratropical cyclones over the North Atlantic and western Europe during the Last Glacial Maximum and implications for proxy interpretation. Climate of the Past, 2020, 16, 611-626.	3.4	33
42	An 18-year climatology of derechos in Germany. Natural Hazards and Earth System Sciences, 2020, 20, 1335-1351.	3.6	19
43	Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agricultural Water Management, 2020, 237, 106193.	5.6	30
44	Enhanced extendedâ€range predictability of the 2018 lateâ€winter Eurasian cold spell due to the stratosphere. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1040-1055.	2.7	43
45	The Role of Tropical, Midlatitude, and Polar Cloud-Radiative Changes for the Midlatitude Circulation Response to Global Warming. Journal of Climate, 2020, 33, 7927-7943.	3.2	6
46	Long-term variance of heavy precipitation across central Europe using a large ensemble of regional climate model simulations. Earth System Dynamics, 2020, 11, 469-490.	7.1	19
47	Perspectives of regional paleoclimate modeling. Annals of the New York Academy of Sciences, 2019, 1436, 54-69.	3.8	32
48	From Atmospheric Dynamics to Insurance Losses: An Interdisciplinary Workshop on European Storms. Bulletin of the American Meteorological Society, 2019, 100, ES175-ES178.	3.3	6
49	Cloudâ€Radiative Impact on the Regional Responses of the Midlatitude Jet Streams and Storm Tracks to Global Warming. Journal of Advances in Modeling Earth Systems, 2019, 11, 1940-1958.	3.8	16
50	Development and prospects of the regional MiKlip decadal prediction system over Europe: predictive skill, added value of regionalization, and ensemble size dependency. Earth System Dynamics, 2019, 10, 171-187.	7.1	10
51	Synoptic-scale conditions and convection-resolving hindcast experiments of a cold-season derecho on 3ÅJanuaryÂ2014 in western Europe. Natural Hazards and Earth System Sciences, 2019, 19, 1023-1040.	3.6	11
52	A new and flexible rainy season definition: Validation for the Greater Horn of Africa and application to rainfall trends. International Journal of Climatology, 2019, 39, 989-1012.	3.5	30
53	Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Climate Dynamics, 2019, 52, 4305-4328.	3.8	31
54	Ensemble Sensitivity Analysis of the Blocking System over Russia in Summer 2010. Monthly Weather Review, 2019, 147, 657-675.	1.4	9

#	Article	IF	CITATIONS
55	Wind Power Persistence Characterized by Superstatistics. Scientific Reports, 2019, 9, 19971.	3.3	37
56	The Future of Midlatitude Cyclones. Current Climate Change Reports, 2019, 5, 407-420.	8.6	77
57	Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Climatic Change, 2019, 152, 179-193.	3.6	79
58	The impact of soil initialization on regional decadal climate predictions in Europe. Climate Research, 2019, 77, 139-154.	1.1	1
59	The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data. Natural Hazards and Earth System Sciences, 2018, 18, 2991-3006.	3.6	24
60	Future Climate Change and Its Impact on Runoff Generation from the Debris-Covered Inylchek Glaciers, Central Tian Shan, Kyrgyzstan. Water (Switzerland), 2018, 10, 1513.	2.7	13
61	An Interdisciplinary Approach to the Study of Extreme Weather Events: Large-Scale Atmospheric Controls and Insights from Dynamical Systems Theory and Statistical Mechanics. Bulletin of the American Meteorological Society, 2018, 99, ES81-ES85.	3.3	11
62	The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth System Dynamics, 2018, 9, 91-102.	7.1	53
63	Future Changes of Wind Speed and Wind Energy Potentials in EUROâ€CORDEX Ensemble Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6373-6389.	3.3	112
64	Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. PLoS ONE, 2018, 13, e0201457.	2.5	30
65	Rossby wave breaking, the upper level jet, and serial clustering of extratropical cyclones in western Europe. Geophysical Research Letters, 2017, 44, 514-521.	4.0	23
66	Synoptic Analysis and Hindcast of an Intense Bow Echo in Western Europe: The 9 June 2014 Storm. Weather and Forecasting, 2017, 32, 1121-1141.	1.4	27
67	Statisticalâ€dynamical downscaling of precipitation for Vietnam: methodology and evaluation for the recent climate. International Journal of Climatology, 2017, 37, 4211-4228.	3.5	4
68	The Dynamics of an Extreme Precipitation Event in Northeastern Vietnam in 2015 and Its Predictability in the ECMWF Ensemble Prediction System. Weather and Forecasting, 2017, 32, 1041-1056.	1.4	10
69	The role of cyclone clustering during the stormy winter of 2013/2014. Weather, 2017, 72, 187-192.	0.7	45
70	The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Climate Dynamics, 2017, 48, 4051-4069.	3.8	42
71	Impacts of surface boundary conditions on regional climate model simulations of European climate during the Last Glacial Maximum. Geophysical Research Letters, 2017, 44, 5086-5095.	4.0	37

5

#	Article	IF	CITATIONS
73	The exceptional influence of storm â€~Xaver' on design water levels in the German Bight. Environmental Research Letters, 2016, 11, 054001.	5.2	46
74	Future changes of wind energy potentials over Europe inÂaÂlarge <scp>CMIP5</scp> multiâ€model ensemble. International Journal of Climatology, 2016, 36, 783-796.	3.5	72
75	MiKlip: A National Research Project on Decadal Climate Prediction. Bulletin of the American Meteorological Society, 2016, 97, 2379-2394.	3.3	78
76	Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophysical Research Letters, 2016, 43, 9315-9323.	4.0	58
77	Characterization of synoptic conditions and cyclones associated with top ranking potential wind loss events over Iberia. Atmospheric Science Letters, 2016, 17, 354-361.	1.9	17
78	Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2130-2145.	3.3	90
79	Understanding climate change projections for precipitation over western Europe with a weather typing approach. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1170-1189.	3.3	76
80	Modulation of Daily Rainfall in Southern Vietnam by the Madden–Julian Oscillation and Convectively Coupled Equatorial Waves. Journal of Climate, 2016, 29, 5801-5820.	3.2	19
81	Abrupt transitions in the NAO control of explosive North Atlantic cyclone development. Climate Dynamics, 2016, 47, 3091-3111.	3.8	20
82	Decadal predictability of regional-scale peak winds over Europe using the Earth System Model of the Max-Planck-Institute for Meteorology. Meteorologische Zeitschrift, 2016, 25, 739-752.	1.0	8
83	Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates. Scientific Reports, 2015, 5, 15110.	3.3	87
84	Serial clustering of extratropical cyclones in a multiâ€model ensemble of historical and future simulations. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3076-3087.	2.7	22
85	Statistical–dynamical downscaling for wind energy potentials: evaluation and applications to decadal hindcasts and climate change projections. International Journal of Climatology, 2015, 35, 229-244.	3.5	63
86	Secondary Cyclogenesis along an Occluded Front Leading to Damaging Wind Gusts: Windstorm Kyrill, January 2007. Monthly Weather Review, 2015, 143, 1417-1437.	1.4	25
87	Regionally coupled atmosphereâ€oceanâ€sea iceâ€marine biogeochemistry model ROM: 1. Description and validation. Journal of Advances in Modeling Earth Systems, 2015, 7, 268-304.	3.8	114
88	Climate Change Impacts in the Design of Drainage Systems: Case Study of Portugal. Journal of Irrigation and Drainage Engineering - ASCE, 2015, 141, .	1.0	20
89	Contrasting interannual and multidecadal NAO variability. Climate Dynamics, 2015, 45, 539-556.	3.8	120
90	Projected changes in wind energy potentials over Iberia. Renewable Energy, 2015, 75, 68-80.	8.9	34

#	Article	IF	CITATIONS
91	Can dynamically downscaled windstorm footprints be improved by observations through a probabilistic approach?. Journal of Geophysical Research D: Atmospheres, 2014, 119, 713-725.	3.3	13
92	On the clustering of winter storm loss events over Germany. Natural Hazards and Earth System Sciences, 2014, 14, 2041-2052.	3.6	17
93	Mediterranean cyclones and windstorms in a changing climate. Regional Environmental Change, 2014, 14, 1873-1890.	2.9	64
94	Synoptic Preconditions for Extreme Flooding during the Summer Asian Monsoon in the Mumbai Area. Journal of Hydrometeorology, 2014, 15, 229-242.	1.9	4
95	Return periods of losses associated with European windstorm series in a changing climate. Environmental Research Letters, 2014, 9, 124016.	5.2	22
96	Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Regional Environmental Change, 2014, 14, 295-306.	2.9	75
97	On the relation between explosive cyclones affecting Europe and the North Atlantic Oscillation. Geophysical Research Letters, 2014, 41, 2182-2190.	4.0	22
98	The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1729-1741.	2.7	40
99	Rossby waveâ€breaking analysis of explosive cyclones in the Euroâ€Atlantic sector. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 738-753.	2.7	40
100	Largeâ€scale dynamics associated with clustering of extratropical cyclones affecting Western Europe. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,704.	3.3	76
101	Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions. PLoS ONE, 2014, 9, e108078.	2.5	65
102	Projections of global warming-induced impacts on winter storm losses in the German private household sector. Climatic Change, 2013, 121, 195-207.	3.6	23
103	IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bulletin of the American Meteorological Society, 2013, 94, 529-547.	3.3	391
104	Statistical–dynamical downscaling of present day and future precipitation regimes in the Aksu river catchment in Central Asia. Global and Planetary Change, 2013, 107, 36-49.	3.5	16
105	Ensemble projections for wine production in the Douro Valley of Portugal. Climatic Change, 2013, 117, 211-225.	3.6	51
106	Regional Changes in Wind Energy Potential over Europe Using Regional Climate Model Ensemble Projections. Journal of Applied Meteorology and Climatology, 2013, 52, 903-917.	1.5	116
107	Are the Winters 2010 and 2012 Archetypes Exhibiting Extreme Opposite Behavior of the North Atlantic Jet Stream?*. Monthly Weather Review, 2013, 141, 3626-3640.	1.4	59
108	Serial clustering of extratropical cyclones over the North Atlantic and Europe under recent and future climate conditions. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,476.	3.3	63

#	Article	IF	CITATIONS
109	Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?. Meteorologische Zeitschrift, 2013, 22, 61-68.	1.0	77
110	Identification and ranking of extraordinary rainfall events over Northwest Italy: The role of Atlantic moisture. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2085-2097.	3.3	62
111	Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Natural Hazards and Earth System Sciences, 2013, 13, 2239-2251.	3.6	56
112	Climate of the Mediterranean. , 2012, , 301-346.		78
113	Large-Scale Atmospheric Circulation Driving Extreme Climate Events in the Mediterranean and its Related Impacts. , 2012, , 347-417.		25
114	A combined statistical and dynamical approach for downscaling largeâ€scale footprints of European windstorms. Geophysical Research Letters, 2012, 39, .	4.0	33
115	Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophysical Research Letters, 2012, 39, .	4.0	73
116	Response of the North Atlantic storm track toÂclimate change shaped by ocean–atmosphere coupling. Nature Geoscience, 2012, 5, 313-317.	12.9	272
117	The 20 February 2010 Madeira flash-floods: synoptic analysis and extreme rainfall assessment. Natural Hazards and Earth System Sciences, 2012, 12, 715-730.	3.6	70
118	Past and recent changes in the North Atlantic oscillation. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3, 79-90.	8.1	129
119	Heat and moisture budgets from airborne measurements and high-resolution model simulations. Meteorology and Atmospheric Physics, 2012, 117, 47-61.	2.0	4
120	Climate change scenarios for precipitation extremes in Portugal. Theoretical and Applied Climatology, 2012, 108, 217-234.	2.8	77
121	Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Climate Research, 2012, 51, 89-103.	1.1	98
122	Loss potentials associated with European windstorms under future climate conditions. Climate Research, 2012, 54, 1-20.	1.1	73
123	Dynamical Evolution of North Atlantic Ridges and Poleward Jet Stream Displacements. Journals of the Atmospheric Sciences, 2011, 68, 954-963.	1.7	46
124	The Simulation of the Opposing Fluxes of Latent Heat and CO2 over Various Land-Use Types: Coupling a Gas Exchange Model to a Mesoscale Atmospheric Model. Boundary-Layer Meteorology, 2011, 139, 121-141.	2.3	6
125	Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. International Journal of Biometeorology, 2011, 55, 119-131.	3.0	99
126	The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dynamics, 2011, 36, 337-354.	3.8	58

#	Article	IF	CITATIONS
127	Klaus – an exceptional winter storm over northern Iberia and southern France. Weather, 2011, 66, 330-334.	0.7	83
128	Large-scale atmospheric dynamics of the wet winter 2009–2010 and its impact on hydrology in Portugal. Climate Research, 2011, 46, 29-41.	1.1	39
129	Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. International Journal of Climatology, 2010, 30, 1289-1300.	3.5	79
130	The Empirical Forcing Function as a tool for the diagnosis of large-scale atmospheric anomalies. Annales Geophysicae, 2010, 28, 75-87.	1.6	2
131	Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Natural Hazards and Earth System Sciences, 2010, 10, 1379-1391.	3.6	109
132	European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Climate Research, 2010, 42, 27-43.	1.1	77
133	Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 2010, 43, 163-177.	1.1	148
134	The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Natural Hazards and Earth System Sciences, 2009, 9, 405-423.	3.6	190
135	Synoptic-Scale Controls of Persistent Low Temperature and Icy Weather over Southern China in January 2008. Monthly Weather Review, 2009, 137, 3978-3991.	1.4	255
136	Assessment of the Wind Gust Estimate Method in mesoscale modelling of storm events over West Germany. Meteorologische Zeitschrift, 2009, 18, 495-506.	1.0	18
137	Extra-tropical cyclones in the present and future climate: a review. Theoretical and Applied Climatology, 2009, 96, 117-131.	2.8	430
138	Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dynamics, 2009, 32, 711-737.	3.8	191
139	Statistical uncertainty of changes in winter storms over the North Atlantic and Europe in an ensemble of transient climate simulations. Geophysical Research Letters, 2009, 36, .	4.0	55
140	On the development of strong ridge episodes over the eastern North Atlantic. Geophysical Research Letters, 2009, 36, .	4.0	35
141	Changing Northern Hemisphere Storm Tracks in an Ensemble of IPCC Climate Change Simulations. Journal of Climate, 2008, 21, 1669-1679.	3.2	207
142	Extreme wind storms over Europe in present and future climate: a cluster analysis approach. Meteorologische Zeitschrift, 2008, 17, 67-82.	1.0	45
143	Property loss potentials for European midlatitude storms in a changing climate. Geophysical Research Letters, 2007, 34, .	4.0	80
144	Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Natural Hazards and Earth System Sciences, 2007, 7, 165-175.	3.6	95

#	Article	IF	CITATIONS
145	Extraordinary snow accumulations over parts of central Europe during the winter of 2005/06 and weather-related hazards. Weather, 2007, 62, 16-21.	0.7	28
146	Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dynamics, 2007, 29, 195-210.	3.8	199
147	Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorologische Zeitschrift, 2006, 15, 279-291.	1.0	39
148	Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Research, 2006, 31, 59-74.	1.1	110
149	Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift, 2005, 14, 823-838.	1.0	160
150	The 2003 European summer heatwaves and drought -synoptic diagnosis and impacts. Weather, 2004, 59, 209-216.	0.7	374
151	The central European floods of August 2002: Part 1 – Rainfall periods and flood development. Weather, 2003, 58, 371-377.	0.7	208
152	The central European floods of August 2002: Part 2 -Synoptic causes and considerations with respect to climatic change. Weather, 2003, 58, 434-442.	0.7	108
153	Review Article: Wind and storm damage: From Meteorology to Impacts. , 0, , .		0