Tapanendu Kamilya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemoglobinâ^'Silver Interaction and Bioconjugate Formation: A Spectroscopic Study. Journal of Physical Chemistry B, 2010, 114, 7062-7070.	2.6	121
2	Interaction of Ovalbumin with Phospholipids Langmuirâ^'Blodgett Film. Journal of Physical Chemistry B, 2007, 111, 1199-1205.	2.6	75
3	Interaction and incorporation of ovalbumin with stearic acid monolayer: Langmuir–Blodgett film formation and deposition. Colloids and Surfaces B: Biointerfaces, 2007, 58, 137-144.	5.0	40
4	The formation of pepsin monomolecular layer by the Langmuir–Blodgett film deposition technique. Colloids and Surfaces B: Biointerfaces, 2009, 73, 122-131.	5.0	31
5	pH Induced Structural Modulation and Interfacial Activity of Hemoglobin at the Air/Water Interface. Journal of Physical Chemistry B, 2010, 114, 495-502.	2.6	31
6	Effect of Salt on the Formation of Alcohol-Dehydrogenease Monolayer: A Study by the Langmuirâ^'Blodgett Technique. Journal of Physical Chemistry B, 2009, 113, 5128-5135.	2.6	30
7	Immobilization and the conformational study of phospholipid and phospholipid-protein vesicles. Materials Science and Engineering C, 2009, 29, 1480-1485.	7.3	26
8	Incorporation of ovalbumin within cationic octadecylamine monolayer and a comparative study with zwitterionic DPPC and anionic stearic acid monolayer. Journal of Colloid and Interface Science, 2007, 315, 464-474.	9.4	25
9	On the origin of iron-oxide nanoparticle formation using phospholipid membrane template. Colloids and Surfaces B: Biointerfaces, 2010, 79, 384-389.	5.0	25
10	Fibrillation of Egg White Ovalbumin: A Pathway via Biomineralization. Journal of Physical Chemistry B, 2011, 115, 4259-4265.	2.6	24
11	Interaction of glucose with hemoglobin: a study in aqueous solution and at the air–water interface using the Langmuir–Blodgett technique. Physical Chemistry Chemical Physics, 2011, 13, 9385.	2.8	22
12	Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin. Journal Physics D: Applied Physics, 2015, 48, 235305.	2.8	22
13	Safety concerns towards the biomedical application of PbS nanoparticles: An approach through protein-PbS interaction and corona formation. Applied Physics Letters, 2014, 104, .	3.3	17
14	Temperature Dependent and Kinetic Study of the Adsorption of Bovine Serum Albumin to ZnO Nanoparticle Surfaces. ChemistrySelect, 2016, 1, 2872-2882.	1.5	17
15	Formation of Calcium Carbonate Crystal Using Phospholipid Monolayer Template Under Ambient Condition. Journal of Physical Chemistry C, 2010, 114, 8348-8352.	3.1	16
16	Fabrication of Ovalbumin–Phospolipid Thin Film with Minimal Protein Aggregation by Different Self-Assembly Methods. Journal of Nanoscience and Nanotechnology, 2009, 9, 2956-2964.	0.9	14
17	Influence of KCl on the interfacial activity and conformation of hemoglobin studied by Langmuir–Blodgett technique. Physical Chemistry Chemical Physics, 2010, 12, 12997.	2.8	14
18	A novel chemical reduction method of growing ZnO nanocrystals and their optical property. Materials Letters, 2014, 118, 123-125.	2.6	11

TAPANENDU KAMILYA

#	Article	IF	CITATIONS
19	Morphological and optical property of spherical ZnO nanoparticles. Optik, 2015, 126, 1740-1743.	2.9	11
20	Unfolding of Blood Plasma Albumin Protein in Interaction with CdS Nanoparticles. Science of Advanced Materials, 2014, 6, 56-62.	0.7	11
21	Adsorption of pepsin in octadecylamine matrix at air–water interface. Biophysical Chemistry, 2010, 146, 85-91.	2.8	10
22	Photophysical properties of 4-methyl 3-phenyl coumarin organized in Langmuir–Blodgett films: Formation of aggregates. Materials Chemistry and Physics, 2007, 104, 88-92.	4.0	8
23	Wet Chemically Synthesized CuO Bipods and their Optical Properties. Recent Patents on Nanotechnology, 2016, 10, 20-25.	1.3	8
24	Incorporation of pepsin within zwitterionic, anionic, and cationic lipid monolayers: A comparative study. RSC Advances, 2011, 1, 333.	3.6	7
25	Wet chemical growth of ultra-long ZnO nanoplates and their optical property. Chemical Physics Letters, 2013, 584, 155-158.	2.6	7
26	Photo Relaxation Change and Emission Quenching in Different Sizes of PbSâ€Nanoparticlesâ€Protein Corona. ChemistrySelect, 2016, 1, 5768-5778.	1.5	6
27	PROTEIN MONOLAYER FORMATION AT AIR–ELECTROLYTE INTERFACE: A LANGMUIR–BLODGETT STUDY. Surface Review and Letters, 2011, 18, 267-279.	1.1	5
28	Dynamics of Binding of Lysozyme with Gold Nanoparticles: Corona Formation and its Correlation with a Naked-Eye-Based Colorimetric Approach. Nano, 2020, 15, 2050008.	1.0	5
29	Synthesis and characterization of star shaped α-Fe2O3/Au nanocomposites. Materials Today: Proceedings, 2021, 43, 1154-1159.	1.8	5
30	Structural and Optical Properties of Ultra-Long ZnO Nanorods. Advanced Science, Engineering and Medicine, 2016, 8, 128-130.	0.3	5
31	Growth and time dependent alignment of KCl crystals in Hemoglobin LB monolayer. Materials Chemistry and Physics, 2012, 137, 665-672.	4.0	4
32	Absorption Spectroscopic Analysis of ZnO Nanoparticles. Advanced Science, Engineering and Medicine, 2016, 8, 240-244.	0.3	4
33	Study of Time-dependent Interaction of ZnO Nanoparticles with Sucrose and Honey Molecules for Biomedical Applications. Current Nanomaterials, 2019, 4, 216-222.	0.4	3
34	Study of the Adsorption of Human Hemoglobin to Silver (Ag) Nanoparticle Surface for the Detection of the Unfolding of Hemoglobin. Plasmonics, 2022, 17, 1139-1156.	3.4	3
35	Synthesis and Characterization of Super Paramagnetic Iron Oxide Nanoparticles. Nanoscience and Nanotechnology - Asia, 2020, 10, 123-126.	0.7	2
36	Optical Properties of Surface Modified ZnO Nanorods. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 173-176.	0.3	1

#	Article	IF	CITATIONS
37	Sensitivity Enhancement in the Colorimetric/Spectroscopic Determination of Lysozyme Concentration in Nanomolar Level with Colloidal Citrat e Capped Au@Ag Core-shell Nanoparticles. Nanoscience and Nanotechnology - Asia, 2021, 11, .	0.7	ο
38	Inter-band Transition in Citrate Capped Marks Dodecahedral Colloidal Gold Nanoparticles. Current Nanoscience, 2020, 16, 829-836.	1.2	0