Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663751/publications.pdf

Version: 2024-02-01

12
69
g-index
4284
citing authors

#	Article	IF	Citations
1	Nano-LaCoO3 infiltrated BaZr0.8Y0.2O3â^' electrodes for steam splitting in protonic ceramic electrolysis cells. , 2022, 1, 100003.		10
2	Ba _{0.5} Gd _{0.8} La _{0.7} Co ₂ O _{6â^îÎ} Infiltrated BaZr _{0.8} Y _{0.2} O _{3â^îÎ} Composite Oxygen Electrodes for Protonic Ceramic Cells. Journal of the Electrochemical Society, 2022, 169, 014513.	1.3	2
3	Planar proton-conducting ceramic cells for hydrogen extraction: Mechanical properties, electrochemical performance and up-scaling. International Journal of Hydrogen Energy, 2022, 47, 6745-6754.	3.8	6
4	Segregation-driven exceptional twin-boundary strengthening in lean Mg–Zn–Ca alloys. Acta Materialia, 2022, 229, 117746.	3.8	25
5	Evaluation of La0.6Sr0.4CoO3-Î-Ce0.85Sm0.075Nd0.075O2-Î-composite cathodes for intermediate temperature solid oxide fuel cells. Ceramics International, 2022, 48, 16319-16325.	2.3	8
6	Joining of Co coated ferritic stainless steel to ceramic solid oxide cells by a novel Ag-SiO2 braze. Journal of Materials Science and Technology, 2022, 121, 174-180.	5.6	1
7	Large-area protonic ceramic cells for hydrogen purification. Separation and Purification Technology, 2022, 295, 121301.	3.9	9
8	Ba0.5Gd0.8La0.7Co2O6â^ÎÎInfiltrated BaZr0.8Y0.2O3-ÎComposite Oxygen Electrodes for Protonic Ceramic Electrolysis Cells. ECS Meeting Abstracts, 2021, MA2021-01, 1150-1150.	0.0	0
9	Ba _{0.5} Gd _{0.8} La _{0.7} Co ₂ O _{6â^îî´} Infiltrated BaZr _{0.8} Y _{0.2} O _{3-δ} Composite Oxygen Electrodes for Protonic Ceramic Electrolysis Cells. ECS Transactions, 2021, 102, 3-16.	0.3	1
10	Stacking-fault mediated plasticity and strengthening in lean, rare-earth free magnesium alloys. Acta Materialia, 2021, 211, 116877.	3.8	26
11	Towards the Validation of a Phase Field Model for Ni Coarsening in Solid Oxide Cells. Acta Materialia, 2021, 212, 116887.	3.8	8
12	Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells. Npj Computational Materials, $2021, 7, .$	3.5	9
13	Lessons Learned from Operating a Solid Oxide Electrolysis Cell at 1.25 a/cm2 for One Year. ECS Meeting Abstracts, 2021, MA2021-03, 213-213.	0.0	О
14	La-doped Ba0.5Sr0.5Co0.8Fe0.2O3- d as Cathode for Protonic-Conducting Solid Oxide Fuel Cells with Enhanced Structure Stability. ECS Meeting Abstracts, 2021, MA2021-03, 140-140.	0.0	0
15	Effects of Flow Channel Arrangement and Electrolyte Thickness on Thermal Stress for Planar Solid Oxide Fuel Cell Stacks. ECS Transactions, 2021, 103, 767-784.	0.3	1
16	La-doped Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O ₃₋ _d as Cathode for Protonic-Conducting Solid Oxide Fuel Cells with Enhanced Structure Stability. ECS Transactions, 2021, 103, 1525-1535.	0.3	3
17	Lessons Learned from Operating a Solid Oxide Electrolysis Cell at 1.25 a/cm2 for One Year. ECS Transactions, 2021, 103, 475-486.	0.3	2
18	Effects of Flow Channel Arrangement and Electrolyte Thickness on Thermal Stress for Planar Solid Oxide Fuel Cell Stacks. ECS Meeting Abstracts, 2021, MA2021-03, 146-146.	0.0	1

#	Article	IF	Citations
19	Study of solid oxide electrolysis cells operated in potentiostatic mode: Effect of operating temperature on durability. Chemical Engineering Journal, 2021, 417, 129260.	6.6	42
20	An operation strategy for mitigating the degradation of solid oxide electrolysis cells for syngas production. Journal of Power Sources, 2021, 506, 230136.	4.0	10
21	Ni migration in solid oxide cell electrodes: Review and revised hypothesis. Fuel Cells, 2021, 21, 415-429.	1.5	63
22	Magnetron sputtering of carbon supersaturated tungsten films – A chemical approach to increase strength. Materials and Design, 2021, 208, 109874.	3.3	4
23	Design, manufacturing, and operation of movable 2 \tilde{A} — $10~kW$ size rSOC system. Fuel Cells, 2021, 21, 477-487.	1.5	12
24	Influence of helium ion irradiation on the structure and strength of diamond. Carbon, 2020, 158, 337-345.	5.4	15
25	Defining aluminum-zoning during synthesis of ZSM-5 zeolites. Physical Chemistry Chemical Physics, 2020, 22, 734-739.	1.3	23
26	Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells. Journal of Power Sources, 2020, 450, 227599.	4.0	102
27	Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes. Applied Energy, 2020, 259, 114130.	5.1	26
28	Densification and electrical conductivity of Fe and Mnâ€doped Ce 0.83 Sm 0.085 Nd 0.085 O 2â€& by solidâ€liquid method. International Journal of Applied Ceramic Technology, 2020, 17, 2716-2724.	1.1	3
29	Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 2020, 45, 23765-23781.	3.8	74
30	Achieving micron-scale plasticity and theoretical strength in Silicon. Nature Communications, 2020, 11, 2681.	5.8	42
31	Improving oxygen incorporation rate on (La0.6Sr0.4)0.98FeO3-δvia Pr2Ni1-xCuxO4+δsurface decoration. Journal of Power Sources, 2020, 457, 228035.	4.0	14
32	Preparation and characterisation of iron substituted Mn1.7Cu1.3-xFexO4 spinel oxides (x = 0, 0.1, 0.3,) Tj ETQq0	0.0.rgBT	/Oygrlock 10
33	An Up-scalable, Infiltration-Based Approach for Improving the Durability of Ni/YSZ Electrodes for Solid Oxide Cells. Journal of the Electrochemical Society, 2020, 167, 024519.	1.3	23
34	Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes. Applied Energy, 2020, 263, 114601.	5.1	26
35	Size-dependent plasticity and activation parameters of lithographically-produced silicon micropillars. Materials and Design, 2020, 189, 108506.	3.3	20
36	Enhanced Activity of Pr ₆ O ₁₁ and CuO Infiltrated Ce _{0.9} Gd _{0.1} O ₂ Based Composite Oxygen Electrodes. Journal of the Electrochemical Society, 2020, 167, 024505.	1.3	16

#	Article	IF	CITATIONS
37	MnxCo3-xO4 spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 14867-14879.	3.8	35
38	Promotion of oxygen reduction and evolution by applying a nanoengineered hybrid catalyst on cobalt free electrodes for solid oxide cells. Journal of Materials Chemistry A, 2020, 8, 9039-9048.	5.2	22
39	Large-area solid oxide cells with La0.6Sr0.4CoO3-Î' infiltrated oxygen electrodes for electricity generation and hydrogen production. Journal of Power Sources, 2020, 451, 227742.	4.0	43
40	Deposition and Electrical and Structural Properties of La0.6Sr0.4CoO3 Thin Films for Application in High-Temperature Electrochemical Cells. Journal of Electronic Materials, 2019, 48, 5428-5441.	1.0	8
41	A 4 \tilde{A} — 4 cm ² Nanoengineered Solid Oxide Electrolysis Cell for Efficient and Durable Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25996-26004.	4.0	77
42	Effective yttrium based coating for steel interconnects of solid oxide cells: Corrosion evaluation in steam-hydrogen atmosphere. Journal of Power Sources, 2019, 440, 226814.	4.0	11
43	Interdiffusion between gadolinia doped ceria and yttria stabilized zirconia in solid oxide fuel cells: Experimental investigation and kinetic modeling. Journal of Power Sources, 2019, 441, 227152.	4.0	29
44	Degradation in Solid Oxide Electrolysis Cells During Long Term Testing. Fuel Cells, 2019, 19, 740-747.	1.5	48
45	Comprehensive Hypotheses for Degradation Mechanisms in Ni-Stabilized Zirconia Electrodes. ECS Transactions, 2019, 91, 613-620.	0.3	8
46	In Situ Densification of Gadolinium-Doped Ceria Interlayer by Infiltration Process in SOFC. ECS Transactions, 2019, 91, 1149-1156.	0.3	5
47	Improving Oxygen Electrodes by Infiltration and Surface Decoration. ECS Transactions, 2019, 91, 1413-1424.	0.3	8
48	Optimization and Durability of Reversible Solid Oxide Cells. ECS Transactions, 2019, 91, 2631-2639.	0.3	10
49	Evaluation of SUS430 with Mn-Co Coating as SOFC Interconnect in Reducing Atmosphere. ECS Transactions, 2019, 91, 2241-2252.	0.3	1
50	Reversible solid-oxide cells for clean and sustainable energy. Clean Energy, 2019, 3, 175-201.	1.5	153
51	Development of Solid Oxide Electrolysis Cells for Hydrogen Production at High Current Densities. ECS Transactions, 2019, 91, 2433-2442.	0.3	3
52	Numerical Simulation of the SrZrO3 Formation in Solid Oxide Fuel Cells. Journal of Electronic Materials, 2019, 48, 5510-5515.	1.0	5
53	Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics. Renewable and Sustainable Energy Reviews, 2019, 110, 174-187.	8.2	85
54	Thermodynamic Modeling of the La-Co-O System. Journal of Phase Equilibria and Diffusion, 2019, 40, 219-234.	0.5	6

#	Article	IF	CITATIONS
55	Thermodynamic modeling of the chromium-yttrium-oxygen system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 1-10.	0.7	4
56	3D Microstructural Characterization of Ni/YSZ Electrodes Exposed to 1 Year of Electrolysis Testing. Journal of the Electrochemical Society, 2019, 166, F158-F167.	1.3	37
57	Reversible operation of a pressurized solid oxide cell stack using carbonaceous gases. Journal of Energy Storage, 2019, 22, 106-115.	3.9	16
58	High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air. Journal of Alloys and Compounds, 2019, 787, 1327-1335.	2.8	49
59	Boosting the performance and durability of Ni/YSZ cathode for hydrogen production at high current densities <i>via</i> decoration with nano-sized electrocatalysts. Nanoscale, 2019, 11, 4394-4406.	2.8	56
60	Comparison between La0.6Sr0.4CoO3-d and LaNi0.6Co0.4O3-d infiltrated oxygen electrodes for long-term durable solid oxide fuel cells. Electrochimica Acta, 2018, 266, 293-304.	2.6	23
61	Fracture of Silicon: Influence of rate, positioning accuracy, FIB machining, and elevated temperatures on toughness measured by pillar indentation splitting. Materials and Design, 2018, 142, 340-349.	3.3	56
62	Oxidation behavior of a Ni-Fe support in SOFC anode atmosphere. Journal of Alloys and Compounds, 2018, 765, 757-763.	2.8	15
63	Sintering of MnCo2O4 coatings prepared by electrophoretic deposition. Materials Letters, 2018, 213, 394-398.	1.3	43
64	Numerical simulation of kinetic demixing and decomposition in a LaCoO3-δoxygen membrane under an oxygen potential gradient. Journal of Membrane Science, 2018, 548, 526-539.	4.1	9
65	Spinel-based coatings for metal supported solid oxide fuel cells. Materials Research Bulletin, 2017, 89, 232-244.	2.7	19
66	A Decade of Solid Oxide Electrolysis Improvements at DTU Energy. ECS Transactions, 2017, 75, 3-14.	0.3	17
67	Relation Between Ni Particle Shape Change and Ni Migration in Ni–YSZ Electrodes – a Hypothesis. Fuel Cells, 2017, 17, 434-441.	1.5	93
68	In-situ formed Ce0.8Gd0.2O1.9 barrier layers on yttria stabilized zirconia backbones by infiltration - A promising path to high performing oxygen electrodes of solid oxide cells. Solid State Ionics, 2017, 304, 51-59.	1.3	10
69	High performance LaNi 1-x Co x O $3-\hat{l}$ (xÂ=Â0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells. Journal of Power Sources, 2017, 353, 67-76.	4.0	35
70	Concentration Impedance in Testing of Solid Oxide Cells Revisited. ECS Transactions, 2017, 78, 2133-2139.	0.3	3
71	Performance and electrochemical analysis of solid oxide fuel cells based on <scp>LSCF</scp> â€ <scp>YSZ</scp> nanoâ€electrode. International Journal of Applied Ceramic Technology, 2017, 14, 1006-1012.	1.1	22
72	Microstructural Characterization of Ni/YSZ Electrodes in a Solid Oxide Electrolysis Stack Tested for 9000 Hours. ECS Transactions, 2017, 78, 3049-3064.	0.3	11

#	Article	IF	Citations
73	Thermoneutral Operation of Solid Oxide Electrolysis Cells in Potentiostatic Mode. ECS Transactions, 2017, 78, 3077-3088.	0.3	27
74	Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects. Journal of the Electrochemical Society, 2017, 164, F1005-F1010.	1.3	15
75	Analysis of Gas Leakage and Current Loss of Solid Oxide Fuel Cells by Screen Printing. ECS Transactions, 2017, 78, 1533-1540.	0.3	2
76	Mechanical Properties of Supports and Halfâ€Cells for Solid Oxide Electrolysis Influenced by Aluminaâ€Zirconia Composites. Fuel Cells, 2017, 17, 132-143.	1.5	8
77	A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron. International Journal of Metalcasting, 2017, 11, 61-70.	1.5	5
78	Application of numerical inverse method in calculation of composition-dependent interdiffusion coefficients in finite diffusion couples. Metallurgical and Materials Engineering, 2017, 23, 197-211.	0.2	5
79	Characterization of a Planar Solid Oxide Cell Stack Operated at Elevated Pressure. Journal of the Electrochemical Society, 2016, 163, F1596-F1604.	1.3	23
80	Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750°C. Journal of Power Sources, 2016, 336, 408-418.	4.0	68
81	Assesment of (Mn,Co) ₃ 30 ₄ powders for possible coating material for SOFC/SOEC interconnects. IOP Conference Series: Materials Science and Engineering, 2016, 104, 012017.	0.3	11
82	LaNi1-xCoxO3-δ(x=0.4 to 0.7) cathodes for solid oxide fuel cells by infiltration. IOP Conference Series: Materials Science and Engineering, 2016, 104, 012019.	0.3	2
83	Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements. Materials Characterization, 2016, 117, 99-112.	1.9	16
84	Effects of Strong Cathodic Polarization of the Ni-YSZ Interface. Journal of the Electrochemical Society, 2016, 163, F1217-F1227.	1.3	22
85	Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability. Solid State lonics, 2016, 293, 27-36.	1.3	155
86	High-Temperature In situ Deformation of GaAs Micro-pillars: Lithography Versus FIB Machining. Jom, 2016, 68, 2761-2767.	0.9	17
87	An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells. Journal of Power Sources, 2016, 315, 339-350.	4.0	46
88	Thermodynamic modeling of the Sr–Co–Fe–O system. Solid State Ionics, 2016, 292, 88-97.	1.3	8
89	Pressurized Operation of a Planar Solid Oxide Cell Stack. Fuel Cells, 2016, 16, 205-218.	1.5	44
90	Phase diagram for a nano-yttria-stabilized zirconia system. RSC Advances, 2016, 6, 17438-17445.	1.7	36

#	Article	IF	CITATIONS
91	High-Performance Microchanneled Asymmetric Gd _{0.1} Ce _{0.9} FeO _{3 Membranes for Oxygen Separation. ACS Applied Materials & Date: Interfaces, 2016, 8, 4548-4560.}	â4Î&/sub>	- Ba sed
92	Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles. Electrochimica Acta, 2016, 189, 265-282.	2.6	58
93	Stability of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 /Ce 0.9 Gd 0.1 O 2 cathodes during sintering and solid oxide fuel cell operation. Journal of Power Sources, 2015, 283, 151-161.	4.0	77
94	Residual stresses and strength of multilayer tape cast solid oxide fuel and electrolysis half-cells. Journal of Power Sources, 2015, 288, 243-252.	4.0	24
95	A novel CO ₂ - and SO ₂ -tolerant dual phase composite membrane for oxygen separation. Chemical Communications, 2015, 51, 7140-7143.	2.2	39
96	Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects. ECS Transactions, 2015, 68, 1691-1700.	0.3	5
97	Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production. ECS Transactions, 2015, 68, 3359-3368.	0.3	14
98	Ceria Based Protective Coatings for Steel Interconnects Prepared by Spray Pyrolysis. Procedia Engineering, 2014, 98, 93-100.	1.2	18
99	Durability of high performance Ni–yttria stabilized zirconia supported solid oxide electrolysis cells at high current density. Journal of Power Sources, 2014, 262, 316-322.	4.0	83
100	Stability and oxygen transport property of La0.8Sr0.2Cr0.5Fe0.5O3-δ. Solid State Ionics, 2014, 260, 86-89.	1.3	13
101	TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation. Dalton Transactions, 2014, 43, 14949-14958.	1.6	13
102	Electrochemistry Unlocks Wettability: Epitaxial Growth of Oxide Nanoparticles on Rough Metallic Surfaces. ChemElectroChem, 2014, 1, 520-523.	1.7	22
103	Oxidation study of coated Crofer 22 APU steel in dry oxygen. Journal of Power Sources, 2014, 251, 488-495.	4.0	37
104	Durability of Solid Oxide Electrolysis Cell and Interconnects for Steam Electrolysis. ECS Transactions, 2013, 57, 3229-3238.	0.3	10
105	Durability of Solid Oxide Electrolysis Cells for Syngas Production. Journal of the Electrochemical Society, 2013, 160, F1074-F1080.	1.3	65
106	Diffusion of Nickel into Ferritic Steel Interconnects of Solid Oxide Fuel/Electrolysis Stacks. ECS Transactions, 2013, 57, 2245-2252.	0.3	13
107	Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. Journal of Power Sources, 2013, 223, 349-357.	4.0	113
108	Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics. Microscopy and Microanalysis, 2013, 19, 501-505.	0.2	12

#	Article	IF	CITATIONS
109	High Temperature Coâ€Electrolysis of Steam and CO ₂ in an SOC Stack: Performance and Durability. Fuel Cells, 2013, 13, 638-645.	1.5	43
110	Thermodynamic modeling of the Co–Fe–O system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2013, 41, 76-88.	0.7	23
111	Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current. Journal of the Electrochemical Society, 2013, 160, F883-F891.	1.3	136
112	High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stacks. ECS Transactions, 2013, 50, 11-20.	0.3	15
113	Performance and Durability of Solid Oxide Electrolysis Cells for Syngas Production. ECS Transactions, 2012, 41, 77-85.	0.3	15
114	Thermodynamic modeling of La2O3–SrO–Mn2O3–Cr2O3 for solid oxide fuel cell applications. Journal of Materials Research, 2012, 27, 1915-1926.	1.2	15
115	Efficient dual layer interconnect coating for high temperature electrochemical devices. International Journal of Hydrogen Energy, 2012, 37, 14501-14510.	3.8	39
116	Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2012, 37, 17101-17110.	3.8	134
117	High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stacks. ECS Meeting Abstracts, 2012, , .	0.0	О
118	Improved oxidation resistance of ferritic steels with LSM coating for high temperature electrochemical applications. International Journal of Hydrogen Energy, 2012, 37, 8087-8094.	3.8	20
119	Microstructure degradation of LSM-YSZ cathode in SOFCs operated at various conditions. Solid State lonics, 2012, 206, 97-103.	1.3	46
120	The Effect of Humidity and Oxygen Partial Pressure on LSM–YSZ Cathode. Fuel Cells, 2011, 11, 669-677.	1.5	25
121	Electrical conductivity of Ni–YSZ composites: Degradation due to Ni particle growth. Solid State lonics, 2011, 189, 82-90.	1.3	99
122	Stability of Ni–yttria stabilized zirconia anodes based on Ni-impregnation. Journal of Power Sources, 2010, 195, 7295-7301.	4.0	91
123	Phase Formation in the System ZrO ₂ â€"LaO _{1.5} â€"MnO <i>_x</i> in Air and <i>P</i> ip 2010, 93, 2884-2890.	1.9	2
124	Investigation of Failure Mechanisms in Ti Containing Brazing Alloys Used in SOFC/SOEC Environments. , 2010, , .		1
125	Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects. Corrosion Science, 2010, 52, 3309-3320.	3.0	100
126	LSM–YSZ Reactions in Different Atmospheres. Fuel Cells, 2009, 9, 833-840.	1.5	44

#	Article	IF	CITATIONS
127	Thermodynamic Assessment of the La-Cr-O System. Journal of Phase Equilibria and Diffusion, 2009, 30, 12-27.	0.5	22
128	Thermodynamic Assessment of the La-Fe-O System. Journal of Phase Equilibria and Diffusion, 2009, 30, 351-366.	0.5	30
129	Microstructural studies on degradation of interface between LSM–YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics, 2009, 180, 1298-1304.	1.3	107
130	Thermodynamic assessment of the CoOx–CrO1.5 system. Journal of Alloys and Compounds, 2009, 485, 427-434.	2.8	11
131	Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs. ECS Transactions, 2009, 25, 439-446.	0.3	7
132	Deposition of La0.8Sr0.2Cr0.97V0.03O3 and MnCr2O4 thin films on ferritic alloy for solid oxide fuel cell application. Surface and Coatings Technology, 2007, 202, 1262-1266.	2.2	26
133	Thermodynamic modeling of the La–Mn–Y–Zr–O system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 489-500.	0.7	21
134	Thermodynamic modeling of phase equilibria in the Mn–Y–Zr–O system. Solid State Ionics, 2005, 176, 1457-1464.	1.3	32
135	Thermodynamic Assessment of the Mnâ€"Yâ€"O System ChemInform, 2005, 36, no.	0.1	O
136	Assessment of the La-Mn-O system. Journal of Phase Equilibria and Diffusion, 2005, 26, 131-151.	0.5	35
137	Thermodynamic assessment of the Mn–Y–O system. Journal of Alloys and Compounds, 2005, 393, 114-121.	2.8	27
138	CALPHAD modeling of the La2O3–Y 2O3 system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29, 103-113.	0.7	17
139	Assessment of the La-Mn-O System. Journal of Phase Equilibria and Diffusion, 2005, 26, 131-151.	0.5	2
140	Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ionics, 2004, 170, 255-274.	1.3	115
141	Thermodynamic assessment of the Co-O system. Journal of Phase Equilibria and Diffusion, 2003, 24, 212-227.	0.3	126
142	Deformation Twinning in Nanocrystalline Aluminum. Science, 2003, 300, 1275-1277.	6.0	1,058
143	CeO2â€"CoO Phase Diagram ChemInform, 2003, 34, no.	0.1	О
144	CeO ₂ â^'CoO Phase Diagram. Journal of the American Ceramic Society, 2003, 86, 1567-1570.	1.9	47

MING CHEN

#	Article	IF	CITATIONS
145	Material research for planar SOFC stack. Solid State Ionics, 2002, 148, 513-519.	1.3	81
146	Research on planar SOFC stack. Solid State Ionics, 2002, 152-153, 399-404.	1.3	35
147	Microstructure and conductivity of alumina-fiber-doped YSZ membranes. Ionics, 2000, 6, 403-407.	1.2	1