Xue-Hui Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637302/publications.pdf

Version: 2024-02-01

567281 610901 24 647 15 24 h-index citations g-index papers 25 25 25 685 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Controllable preparation of particles with microfluidics. Particuology, 2011, 9, 545-558.	3.6	110
2	Multi-functional micromotor: microfluidic fabrication and water treatment application. Lab on A Chip, 2017, 17, 4220-4224.	6.0	53
3	Multiphase Microfluidics: Fundamentals, Fabrication, and Functions. Small, 2020, 16, e1906357.	10.0	53
4	Controlled stimulation-burst targeted release by smart decentered core–shell microcapsules in gravity and magnetic field. Lab on A Chip, 2014, 14, 4451-4454.	6.0	38
5	A one-step microfluidic approach for controllable preparation of nanoparticle-coated patchy microparticles. Microfluidics and Nanofluidics, 2012, 13, 491-498.	2.2	37
6	Water–oil Janus emulsions: microfluidic synthesis and morphology design. Soft Matter, 2016, 12, 3425-3430.	2.7	33
7	Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism of their multiple color emission. Lab on A Chip, 2019, 19, 3974-3978.	6.0	33
8	Continuous-flow synthesis of azo dyes in a microreactor system. Chemical Engineering and Processing: Process Intensification, 2018, 127, 43-49.	3.6	32
9	Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Advances, 2021, 3, 2180-2195.	4.6	27
10	Continuous synthesis of Gabapentin with a microreaction system. Chemical Engineering Science, 2017, 173, 507-513.	3.8	26
11	A region-selective modified capillary microfluidic device for fabricating water–oil Janus droplets and hydrophilic–hydrophobic anisotropic microparticles. RSC Advances, 2015, 5, 46981-46988.	3.6	23
12	Four reversible and reconfigurable structures for three-phase emulsions: extended morphologies and applications. Scientific Reports, 2017, 7, 42738.	3.3	22
13	Microfluidic preparation and structure evolution of double emulsions with two-phase cores. RSC Advances, 2014, 4, 1900-1906.	3.6	21
14	Continuous-Flow Synthesis of Pigment Red 146 in a Microreactor System. Industrial & Engineering Chemistry Research, 2019, 58, 16338-16347.	3.7	21
15	Largeâ€Scale Production of Ligandâ€Engineered Robust Lead Halide Perovskite Nanocrystals by a Dropletâ€Based Microreactor System. Small, 2022, 18, e2200740.	10.0	17
16	Microfluidic preparation of flexible micro-grippers with precise delivery function. Lab on A Chip, 2018, 18, 1838-1843.	6.0	16
17	Continuous-Flow Synthesis of the Azo Pigment Yellow 14 Using a Three-Stream Micromixing Process. Organic Process Research and Development, 2019, 23, 2637-2646.	2.7	15
18	Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	15

Xue-Hui Ge

#	Article	lF	CITATION
19	Efficient synthesis of dodecylbenzene sulfonic acid in microreaction systems. Chemical Engineering and Processing: Process Intensification, 2020, 149, 107858.	3.6	15
20	Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system. Reaction Chemistry and Engineering, 2021, 6, 1950-1960.	3.7	14
21	Smart Amphiphilic Janus Microparticles: Oneâ€Step Synthesis and Selfâ€Assembly. ChemPhysChem, 2018, 19, 2009-2013.	2.1	13
22	Continuous-flow diazotization of red base KD hydrochloride suspensions in a microreaction system. Reaction Chemistry and Engineering, 2021, 6, 1462-1474.	3.7	7
23	The preparation of peppermint oil/2-hydroxypropyl- \hat{l}^2 -cyclodextrin/chitosan composite microcapsule and their prolonged retaining ability. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	3
24	Microfluidicâ€Generated Biopolymer Microparticles as Cargo Delivery Systems. Advanced Materials Technologies, 2022, 7, 2100733.	5.8	3