
Mario Cappiello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications. European Journal of Medicinal Chemistry, 2011, 46, 2797-2806.	2.6	94
2	Synthesis, Activity, and Molecular Modeling of a New Series of Tricyclic Pyridazinones as Selective Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 1996, 39, 4396-4405.	2.9	90
3	Specifically Targeted Modification of Human Aldose Reductase by Physiological Disulfides. Journal of Biological Chemistry, 1996, 271, 33539-33544.	1.6	62
4	New role for leucyl aminopeptidase in glutathione turnover. Biochemical Journal, 2004, 378, 35-44.	1.7	58
5	Site-Specific Inactivation of Aldose Reductase by 4-Hydroxynonenal. Archives of Biochemistry and Biophysics, 1998, 350, 245-248.	1.4	57
6	Oxidative Modification of Aldose Reductase Induced by Copper Ion. Journal of Biological Chemistry, 2002, 277, 42017-42027.	1.6	56
7	Glutathione Dependent Modification of Bovine Lens Aldose Reductase. Experimental Eye Research, 1994, 58, 491-501.	1.2	54
8	A New Approach to Control the Enigmatic Activity of Aldose Reductase. PLoS ONE, 2013, 8, e74076.	1.1	39
9	An investigation on 4-thiazolidinone derivatives as dual inhibitors of aldose reductase and protein tyrosine phosphatase 1B, in the search for potential agents for the treatment of type 2 diabetes mellitus and its complications. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3712-3720.	1.0	37
10	Metal Ion Substitution in the Catalytic Site Greatly Affects the Binding of Sulfhydryl-Containing Compounds to Leucyl Aminopeptidase,. Biochemistry, 2006, 45, 3226-3234.	1.2	34
11	Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorganic and Medicinal Chemistry, 2010, 18, 4049-4055.	1.4	33
12	Design, Synthesis and in Combo Antidiabetic Bioevaluation of Multitarget Phenylpropanoic Acids. Molecules, 2018, 23, 340.	1.7	33
13	A New Approach Against Sugar Cataract Through Aldose Reductase Inhibitors. Experimental Eye Research, 1999, 69, 533-538.	1.2	30
14	The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1152-1158.	2.5	29
15	Thiol and disulfide determination by free zone capillar electrophoresis. Journal of Proteomics, 1993, 26, 335-341.	2.4	28
16	Colorimetric coupled enzyme assay for γ-glutamyltransferase activity using glutathione as substrate. Journal of Proteomics, 2006, 67, 123-130.	2.4	28
17	Thiol Disulfide Exchange Modulates the Activity of Aldose Reductase in Intact Bovine Lens as a Response to Oxidative Stress. Experimental Eye Research, 2000, 70, 795-803.	1.2	22
18	l-Idose: an attractive substrate alternative to d-glucose for measuring aldose reductase activity. Biochemical and Biophysical Research Communications, 2015, 456, 891-895.	1.0	22

MARIO CAPPIELLO

#	Article	IF	CITATIONS
19	Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radical Biology and Medicine, 2016, 99, 323-332.	1.3	22
20	Physiological Thiols as Promoters of Glutathione Oxidation and Modifying Agents in Protein S-Thiolation. Archives of Biochemistry and Biophysics, 2002, 397, 392-398.	1.4	20
21	NADP+-dependent dehydrogenase activity of carbonyl reductase on glutathionylhydroxynonanal as a new pathway for hydroxynonenal detoxification. Free Radical Biology and Medicine, 2015, 83, 66-76.	1.3	20
22	Modulation of aldose reductase activity through S-thiolation by physiological thiols. Chemico-Biological Interactions, 2001, 130-132, 597-608.	1.7	19
23	In Search of Differential Inhibitors of Aldose Reductase. Biomolecules, 2022, 12, 485.	1.8	19
24	Rapid colorimetric determination of reduced and oxidized glutathione using an end point coupled enzymatic assay. Analytical and Bioanalytical Chemistry, 2013, 405, 1779-1785.	1.9	17
25	Thiol/Disulfide Interconversion in Bovine Lens Aldose Reductase Induced by Intermediates of Glutathione Turnoverâ€. Biochemistry, 2001, 40, 11985-11994.	1.2	16
26	Modulation of aldose reductase activity by aldose hemiacetals. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2329-2339.	1.1	16
27	Zolfino landrace (<i>Phaseolus vulgaris</i> L.) from Pratomagno: general and specific features of a functional food. Food and Nutrition Research, 2016, 60, 31792.	1.2	16
28	Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chemical Biology, 2018, 25, 1414-1418.e3.	2.5	16
29	In Search for Multi-Target Ligands as Potential Agents for Diabetes Mellitus and Its Complications—A Structure-Activity Relationship Study on Inhibitors of Aldose Reductase and Protein Tyrosine Phosphatase 1B. Molecules, 2021, 26, 330.	1.7	16
30	Chemical profile and nutraceutical features of Salsola soda (agretti): Anti-inflammatory and antidiabetic potential of its flavonoids. Food Bioscience, 2020, 37, 100713.	2.0	14
31	Basic models for differential inhibition of enzymes. Biochemical and Biophysical Research Communications, 2014, 445, 556-560.	1.0	13
32	Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. European Journal of Medicinal Chemistry, 2017, 130, 328-335.	2.6	13
33	Stereoselectivity of Aldose Reductase in the Reduction of Glutathionyl-Hydroxynonanal Adduct. Antioxidants, 2019, 8, 502.	2.2	12
34	Interaction of arabinogalactan with mucins. International Journal of Biological Macromolecules, 2014, 67, 446-451.	3.6	11
35	Soyasaponins from Zolfino bean as aldose reductase differential inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 350-360.	2.5	11
36	Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules, 2020, 10, 1003.	1.8	11

MARIO CAPPIELLO

#	Article	IF	CITATIONS
37	Chaperone-like activity of α-crystallin toward aldose reductase oxidatively stressed by copper ion. Archives of Biochemistry and Biophysics, 2006, 453, 13-17.	1.4	10
38	Edible vegetables as a source of aldose reductase differential inhibitors. Chemico-Biological Interactions, 2017, 276, 155-159.	1.7	10
39	Kinetic features of carbonyl reductase 1 acting on glutathionylated aldehydes. Chemico-Biological Interactions, 2017, 276, 127-132.	1.7	8
40	Cysteinyl-glycine in the control of glutathione homeostasis in bovine lenses. Molecular Vision, 2010, 16, 1025-33.	1.1	8
41	Purine nucleoside phosphorylase from bovine lens: purification and properties. BBA - Proteins and Proteomics, 1992, 1160, 163-170.	2.1	7
42	Pathways of 4-Hydroxy-2-Nonenal Detoxification in a Human Astrocytoma Cell Line. Antioxidants, 2020, 9, 385.	2.2	7
43	The furanosidic scaffold of <scp>d</scp> -ribose: a milestone for cell life. Biochemical Society Transactions, 2019, 47, 1931-1940.	1.6	7
44	Intra-site differential inhibition of multi-specific enzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 840-846.	2.5	6
45	How the chemical features of molecules may have addressed the settlement of metabolic steps. Metabolomics, 2018, 14, 2.	1.4	4
46	Models of enzyme inhibition and apparent dissociation constants from kinetic analysis to study the differential inhibition of aldose reductase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1426-1436.	2.5	4
47	Impact on enzyme activity as a new quality index of wastewater. Journal of Environmental Management, 2013, 117, 76-84.	3.8	3
48	Zofenoprilat-Glutathione Mixed Disulfide as a Specific S-Thiolating Agent of Bovine Lens Aldose Reductase. Antioxidants and Redox Signaling, 2005, 7, 841-848.	2.5	2
49	Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase. Journal of Biological Inorganic Chemistry, 2017, 22, 559-565.	1.1	2
50	Dehydrogenase/reductase activity of human carbonyl reductase 1 with NADP(H) acting as a prosthetic group. Biochemical and Biophysical Research Communications, 2020, 522, 259-263.	1.0	2
51	Interconversion Pathways of Aldose Reductase Induced by Thiol Compounds. Advances in Experimental Medicine and Biology, 1999, 463, 453-458.	0.8	2
52	Climate-related environmental stress in intertidal grazers: scaling-up biochemical responses to assemblage-level processes. PeerJ, 2016, 4, e2533.	0.9	2
53	Purification and characterization of a Cys-Gly hydrolase from the gastropod mollusk, <i>Patella caerulea</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1560-1565.	2.5	1
54	Apparent cooperativity and apparent hyperbolic behavior of enzyme mixtures acting on the same substrate. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1556-1559.	2.5	1

#	Article	IF	CITATIONS
55	Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase. Analytical Sciences, 2016, 32, 901-906.	0.8	0