Thomas F Baumert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6637175/publications.pdf

Version: 2024-02-01

353 papers 19,347 citations

9786 73 h-index 17105 122 g-index

371 all docs

371 docs citations

371 times ranked

18584 citing authors

#	Article	IF	CITATIONS
1	A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature, 2019, 572, 199-204.	27.8	744
2	EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Medicine, 2011, 17, 589-595.	30.7	631
3	Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 2020, 9, 875.	4.1	516
4	miR-122 – A key factor and therapeutic target in liver disease. Journal of Hepatology, 2015, 62, 448-457.	3.7	487
5	Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6025-6030.	7.1	478
6	Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13109-13113.	7.1	422
7	Cellular Binding of Hepatitis C Virus Envelope Glycoprotein E2 Requires Cell Surface Heparan Sulfate. Journal of Biological Chemistry, 2003, 278, 41003-41012.	3.4	403
8	Hepatitis C Virus Structural Proteins Assemble into Viruslike Particles in Insect Cells. Journal of Virology, 1998, 72, 3827-3836.	3.4	345
9	Initiation of Hepatitis C Virus Infection Is Dependent on Cholesterol and Cooperativity between CD81 and Scavenger Receptor B Type I. Journal of Virology, 2007, 81, 374-383.	3.4	234
10	Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology, 2007, 46, 1722-1731.	7.3	222
11	Neutralizing Antibody-Resistant Hepatitis C Virus Cell-to-Cell Transmission. Journal of Virology, 2011, 85, 596-605.	3.4	218
12	Sofosbuvir compassionate use program for patients with severe recurrent hepatitis C after liver transplantation. Hepatology, 2015, 61, 1485-1494.	7.3	206
13	Hepatitis C Virus Infects the Endothelial Cells of the Blood-Brain Barrier. Gastroenterology, 2012, 142, 634-643.e6.	1.3	203
14	Curing Chronic Hepatitis C — The Arc of a Medical Triumph. New England Journal of Medicine, 2014, 370, 1576-1578.	27.0	203
15	Hepatitis C Virus Hypervariable Region 1 Modulates Receptor Interactions, Conceals the CD81 Binding Site, and Protects Conserved Neutralizing Epitopes. Journal of Virology, 2010, 84, 5751-5763.	3.4	201
16	Tight junction proteins in gastrointestinal and liver disease. Gut, 2019, 68, 547-561.	12.1	201
17	Protein kinase D at the Golgi controls NLRP3 inflammasome activation. Journal of Experimental Medicine, 2017, 214, 2671-2693.	8.5	197
18	Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology, 2006, 43, 563-572.	7.3	191

#	Article	IF	Citations
19	Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology, 2010, 51, 43-53.	7.3	191
20	HCV-Induced Epigenetic Changes Associated With Liver Cancer Risk Persist After Sustained Virologic Response. Gastroenterology, 2019, 156, 2313-2329.e7.	1.3	184
21	Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. Journal of Hepatology, 2014, 61, S79-S90.	3.7	181
22	Two core promotor mutations identified in a hepatitis B virus strain associated with fulminant hepatitis result in enhanced viral replication Journal of Clinical Investigation, 1996, 98, 2268-2276.	8.2	177
23	Molecular Liver Cancer Prevention in Cirrhosis by Organ Transcriptome Analysis and Lysophosphatidic Acid Pathway Inhibition. Cancer Cell, 2016, 30, 879-890.	16.8	172
24	Viral and Cellular Determinants of the Hepatitis C Virus Envelope-Heparan SulfateInteraction. Journal of Virology, 2006, 80, 10579-10590.	3.4	167
25	Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies. Journal of Hepatology, 2011, 54, 566-576.	3.7	161
26	Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8427-8432.	7.1	157
27	Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and diseaseAbiology. Journal of Hepatology, 2020, 73, 1219-1230.	3.7	156
28	Efficient Infection of Primary Tupaia Hepatocytes with Purified Human and Woolly Monkey Hepatitis B Virus. Journal of Virology, 2001, 75, 5084-5089.	3.4	153
29	Monoclonal Anti-Claudin 1 Antibodies Prevent Hepatitis C Virus Infection of Primary Human Hepatocytes. Gastroenterology, 2010, 139, 953-964.e4.	1.3	151
30	RACK1 Controls IRES-Mediated Translation of Viruses. Cell, 2014, 159, 1086-1095.	28.9	149
31	Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-Claudin-1 associations. Hepatology, 2010, 51, 1144-1157.	7.3	144
32	HRas Signal Transduction Promotes Hepatitis C Virus Cell Entry by Triggering Assembly of the Host Tetraspanin Receptor Complex. Cell Host and Microbe, 2013, 13, 302-313.	11.0	141
33	Status of Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection and Remaining Challenges. Gastroenterology, 2019, 156, 431-445.	1.3	133
34	A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology, 2016, 63, 35-48.	7.3	131
35	Hepatitis C Virus Entry. Current Topics in Microbiology and Immunology, 2013, 369, 87-112.	1.1	130
36	Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. Journal of Hepatology, 2011, 54, 48-55.	3.7	129

#	Article	IF	CITATIONS
37	Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nature Biotechnology, 2015, 33, 549-554.	17.5	129
38	APOBEC-mediated interference with hepadnavirus production. Hepatology, 2005, 42, 301-309.	7.3	128
39	Pathogenesis of hepatitis B virus infection. World Journal of Gastroenterology, 2007, 13, 82.	3.3	128
40	HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology, 2018, 154, 1791-1804.e22.	1.3	128
41	The circadian clock and liver function in health and disease. Journal of Hepatology, 2019, 71, 200-211.	3.7	128
42	Hepatitis C Virus, Cholesterol and Lipoproteins â€" Impact for the Viral Life Cycle and Pathogenesis of Liver Disease. Viruses, 2013, 5, 1292-1324.	3.3	126
43	Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. Journal of Experimental Medicine, 2010, 207, 2019-2031.	8.5	125
44	Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Research, 2018, 248, 53-62.	2.2	124
45	Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Research, 2014, 184, 44-53.	2.2	122
46	Infectivity of Hepatitis C Virus Is Influenced by Association with Apolipoprotein E Isoforms. Journal of Virology, 2010, 84, 12048-12057.	3.4	119
47	Hepatitis C virus entry: Molecular biology and clinical implications. Hepatology, 2006, 44, 527-535.	7.3	116
48	Hepatitis C-related hepatocellular carcinoma in the era of new generation antivirals. BMC Medicine, 2017, 15, 52.	5 . 5	116
49	Hepatitis C virus infection and apoptosis. World Journal of Gastroenterology, 2007, 13, 4865.	3.3	114
50	CD81 Expression Is Important for the Permissiveness of Huh7 Cell Clones for Heterogeneous Hepatitis C Virus Infection. Journal of Virology, 2007, 81, 5036-5045.	3.4	112
51	Hepatitis C Virus Induces CD81 and Claudin-1 Endocytosis. Journal of Virology, 2012, 86, 4305-4316.	3.4	110
52	Adaptation of Hepatitis C Virus to Mouse CD81 Permits Infection of Mouse Cells in the Absence of Human Entry Factors. PLoS Pathogens, 2010, 6, e1000978.	4.7	109
53	Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology, 1999, 117, 1397-1407.	1.3	107
54	Characterization of Hepatitis C Virus Particle Subpopulations Reveals Multiple Usage of the Scavenger Receptor BI for Entry Steps. Journal of Biological Chemistry, 2012, 287, 31242-31257.	3.4	104

#	Article	IF	Citations
55	Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut, 2019, 68, 893-904.	12.1	102
56	Radiomics in hepatocellular carcinoma: a quantitative review. Hepatology International, 2019, 13, 546-559.	4.2	100
57	Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents. PLoS Pathogens, 2014, 10, e1004128.	4.7	97
58	Hepatitis C Virus-Induced Upregulation of MicroRNA miR-146a-5p in Hepatocytes Promotes Viral Infection and Deregulates Metabolic Pathways Associated with Liver Disease Pathogenesis. Journal of Virology, 2016, 90, 6387-6400.	3.4	97
59	Binding of Hepatitis C Virus-Like Particles Derived from Infectious Clone H77C to Defined Human Cell Lines. Journal of Virology, 2002, 76, 1181-1193.	3.4	91
60	Plasmodium P36 determines host cell receptor usage during sporozoite invasion. ELife, 2017, 6, .	6.0	91
61	Hepatitis C virus–like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology, 2001, 34, 417-423.	7.3	90
62	Host-targeting agents for prevention and treatment of chronic hepatitis C – Perspectives and challenges. Journal of Hepatology, 2013, 58, 375-384.	3.7	88
63	Uptake and presentation of hepatitis C virus-like particles by human dendritic cells. Blood, 2005, 105, 3605-3614.	1.4	86
64	Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6946-E6954.	7.1	86
65	Reconstitution of the Entire Hepatitis C Virus Life Cycle in Nonhepatic Cells. Journal of Virology, 2012, 86, 11919-11925.	3.4	83
66	Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology, 2014, 59, 776-788.	7.3	83
67	Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C. Gut, 2015, 64, 483-494.	12.1	83
68	Development of hepatitis C virus vaccines: challenges and progress. Expert Review of Vaccines, 2009, 8, 333-345.	4.4	82
69	Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology, 2012, 425, 31-39.	2.4	80
70	Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C. Hepatology, 2007, 46, 682-689.	7.3	79
71	Scavenger Receptor Class B Is Required for Hepatitis C Virus Uptake and Cross-Presentation by Human Dendritic Cells. Journal of Virology, 2008, 82, 3466-3479.	3.4	79
72	A Poxvirus Vaccine Is Safe, Induces T-Cell Responses, and Decreases Viral Load in Patients With Chronic Hepatitis C. Gastroenterology, 2011, 141, 890-899.e4.	1.3	79

#	Article	lF	Citations
73	New aspects of an anti-tumour drug: sorafenib efficiently inhibits HCV replication. Gut, 2009, 58, 1644-1653.	12.1	77
74	Viral manipulation of STAT3: Evade, exploit, and injure. PLoS Pathogens, 2018, 14, e1006839.	4.7	76
75	A New Class of Synthetic Peptide Inhibitors Blocks Attachment and Entry of Human Pathogenic Viruses. Journal of Infectious Diseases, 2012, 205, 1654-1664.	4.0	75
76	Naturally Occurring Mutations Define a Novel Function of the Hepatitis B Virus Core Promoter in Core Protein Expression. Journal of Virology, 1998, 72, 6785-6795.	3.4	75
77	Induction of Hepatitis C Virus E1 Envelope Protein-Specific Immune Response Can Be Enhanced by Mutation of N-Glycosylation Sites. Journal of Virology, 2001, 75, 12088-12097.	3.4	74
78	Scavenger Receptor Class B Type I and Hepatitis C Virus Infection of Primary Tupaia Hepatocytes. Journal of Virology, 2005, 79, 5774-5785.	3.4	74
79	Antibodies Against Hepatitis C Virus–Like Particles and Viral Clearance in Acute and Chronic Hepatitis C. Hepatology, 2000, 32, 610-617.	7.3	72
80	Novel human SR-BI antibodies prevent infection and dissemination of HCV in vitro and in humanized mice. Journal of Hepatology, 2012, 57, 17-23.	3.7	72
81	Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. Journal of General Virology, 2006, 87, 2583-2593.	2.9	71
82	Sustained delivery of siRNAs targeting viral infection by cell-degradable multilayered polyelectrolyte films. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16320-16325.	7.1	71
83	Epidermal growth factor receptor signaling impairs the antiviral activity of interferon-alpha. Hepatology, 2013, 58, 1225-1235.	7.3	71
84	Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus–Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology, 2019, 157, 537-551.e9.	1.3	71
85	The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nature Communications, 2019, 10, 377.	12.8	71
86	Inhibition of Hepatitis C Virus-Like Particle Binding to Target Cells by Antiviral Antibodies in Acute and Chronic Hepatitis C. Journal of Virology, 2004, 78, 9030-9040.	3.4	70
87	A prophylactic hepatitis C virus vaccine: A distant peak still worth climbing. Journal of Hepatology, 2014, 61, S34-S44.	3.7	70
88	Hepatitis C Virus Infection Sensitizes Human Hepatocytes to TRAIL-Induced Apoptosis in a Caspase 9-Dependent Manner. Journal of Immunology, 2008, 181, 4926-4935.	0.8	66
89	Mutations That Alter Use of Hepatitis C Virus Cell Entry Factors Mediate Escape From Neutralizing Antibodies. Gastroenterology, 2012, 143, 223-233.e9.	1.3	66
90	The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology, 2013, 57, 492-504.	7.3	66

#	Article	IF	CITATIONS
91	Hepatitis B Virus Evasion From Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase Sensing in Human Hepatocytes. Hepatology, 2018, 68, 1695-1709.	7.3	66
92	Neutralizing Host Responses in Hepatitis C Virus Infection Target Viral Entry at Postbinding Steps and Membrane Fusion. Gastroenterology, 2008, 135, 1719-1728.e1.	1.3	65
93	Mutations within a Conserved Region of the Hepatitis C Virus E2 Glycoprotein That Influence Virus-Receptor Interactions and Sensitivity to Neutralizing Antibodies. Journal of Virology, 2010, 84, 5494-5507.	3.4	65
94	Tracking Virus-Specific CD4+ T Cells during and after Acute Hepatitis C Virus Infection. PLoS ONE, 2007, 2, e649.	2.5	65
95	Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E. PLoS ONE, 2014, 9, e95550.	2.5	64
96	Apolipoprotein E Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies. Gastroenterology, 2016, 150, 206-217.e4.	1.3	64
97	A look behind closed doors: interaction of persistent viruses with dendritic cells. Nature Reviews Microbiology, 2010, 8, 350-360.	28.6	62
98	Virus–host interactions in hepatitis C virus infection: implications for molecular pathogenesis and antiviral strategies. Trends in Molecular Medicine, 2010, 16, 277-286.	6.7	62
99	Chronic hepatitis C virus infection and pathogenesis of hepatocellular carcinoma. Current Opinion in Virology, 2016, 20, 99-105.	5 . 4	62
100	Virus-Specific CD4+ T Cells Have Functional and Phenotypic Characteristics of Follicular T-Helper Cells in Patients With Acute and Chronic HCV Infections. Gastroenterology, 2016, 150, 696-706.e3.	1.3	62
101	TIP47 plays a crucial role in the life cycle of hepatitis C virus. Journal of Hepatology, 2013, 58, 1081-1088.	3.7	61
102	Trans-Thoracic Minimally Invasive Liver Resection Guided by Augmented Reality. Journal of the American College of Surgeons, 2015, 220, e55-e60.	0.5	61
103	Affinity maturation of a broadly neutralizing human monoclonal antibody that prevents acute hepatitis C virus infection in mice. Hepatology, 2016, 64, 1922-1933.	7.3	60
104	Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication. Journal of Hepatology, 2017, 66, 919-929.	3.7	60
105	Hepatitis C Virus Infection of Neuroepithelioma Cell Lines. Gastroenterology, 2010, 139, 1365-1374.e2.	1.3	59
106	Escitalopram for the Prevention of Peginterferon-α2a–Associated Depression in Hepatitis C Virus–Infected Patients Without Previous Psychiatric Disease. Annals of Internal Medicine, 2012, 157, 94.	3.9	59
107	miR-135a-5p-mediated downregulation of protein tyrosine phosphatase receptor delta is a candidate driver of HCV-associated hepatocarcinogenesis. Gut, 2018, 67, 953-962.	12.1	59
108	Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. Journal of Clinical Investigation, 2002, 109, 221-232.	8.2	59

#	Article	IF	Citations
109	HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells. Blood, 2012, 120, 4544-4551.	1.4	58
110	IFN-λ receptor 1 expression is induced in chronic hepatitis C and correlates with the <i>IFN-λ3</i> genotype and with nonresponsiveness to IFN-α therapies. Journal of Experimental Medicine, 2014, 211, 857-868.	8.5	58
111	Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. Journal of Hepatology, 2020, 72, 865-876.	3.7	58
112	Liver Disease and Coronavirus Disease 2019: From Pathogenesis to Clinical Care. Hepatology, 2021, 74, 1088-1100.	7.3	58
113	Interferon-γ–Stimulated Genes, but Not USP18, Are Expressed in Livers of Patients With Acute Hepatitis C. Gastroenterology, 2012, 143, 777-786.e6.	1.3	57
114	Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma. Gut, 2021, 70, 157-169.	12.1	57
115	Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary <i>Tupaia </i> hepatocytes. Hepatology, 2005, 41, 247-256.	7.3	55
116	Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies. Expert Review of Vaccines, 2016, 15, 1535-1544.	4.4	55
117	Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses, 2015, 7, 5659-5685.	3.3	54
118	A Novel Monoclonal Anti-CD81 Antibody Produced by Genetic Immunization Efficiently Inhibits Hepatitis C Virus Cell-Cell Transmission. PLoS ONE, 2013, 8, e64221.	2.5	53
119	Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. Journal of Clinical Investigation, 2002, 109, 221-232.	8.2	52
120	Mouse models for the study of HCV infection and virus–host interactions. Journal of Hepatology, 2008, 49, 134-142.	3.7	51
121	Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry. Cell Reports, 2015, 12, 864-878.	6.4	50
122	Early Transcriptional Divergence Marks Virus-Specific Primary Human CD8+ T Cells in Chronic versus Acute Infection. Immunity, 2017, 47, 648-663.e8.	14.3	50
123	Detection of the hepatitis B virus (HBV) covalently-closed-circular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector. Antiviral Research, 2017, 145, 14-19.	4.1	49
124	Novel Interactions of Glycosaminoglycans and Bacterial Glycolipids Mediate Binding of Enterococci to Human Cells. Journal of Biological Chemistry, 2009, 284, 18194-18201.	3.4	48
125	TIP47 is associated with the Hepatitis C virus and its interaction with Rab9 is required for release of viral particles. European Journal of Cell Biology, 2013, 92, 374-382.	3.6	46
126	Three Different Functional Microdomains in the Hepatitis C Virus Hypervariable Region 1 (HVR1) Mediate Entry and Immune Evasion. Journal of Biological Chemistry, 2012, 287, 35631-35645.	3.4	45

#	Article	IF	Citations
127	miR-122 acts as a tumor suppressor in hepatocarcinogenesis in vivo. Journal of Hepatology, 2013, 58, 821-823.	3.7	45
128	Broadly neutralizing antibodies from an individual that naturally cleared multiple hepatitis C virus infections uncover molecular determinants for E2 targeting and vaccine design. PLoS Pathogens, 2019, 15, e1007772.	4.7	45
129	Hepatitis C Virus and Hepatocellular Carcinoma: When the Host Loses Its Grip. International Journal of Molecular Sciences, 2020, 21, 3057.	4.1	45
130	Host neutralizing responses and pathogenesis of hepatitis C virus infection. Hepatology, 2008, 48, 299-307.	7.3	44
131	Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection. Viruses, 2016, 8, 261.	3.3	44
132	Entry of hepatitis B and C viruses â€" recent progress and future impact. Current Opinion in Virology, 2014, 4, 58-65.	5.4	43
133	Leukotrienes as Mediators in Diseases of the Liver. Seminars in Liver Disease, 1988, 8, 357-366.	3.6	42
134	Inhibitory effect of adefovir and lamivudine on the initiation of hepatitis B virus infection in primary tupaia hepatocytes. Hepatology, 2003, 38, 1410-1418.	7.3	42
135	Role of Hypervariable Region 1 for the Interplay of Hepatitis C Virus with Entry Factors and Lipoproteins. Journal of Virology, 2014, 88, 12644-12655.	3.4	42
136	Identification of Conserved Residues in Hepatitis C Virus Envelope Glycoprotein E2 That Modulate Virus Dependence on CD81 and SRB1 Entry Factors. Journal of Virology, 2014, 88, 10584-10597.	3.4	41
137	New perspectives for preventing hepatitis C virus liver graft infection. Lancet Infectious Diseases, The, 2016, 16, 735-745.	9.1	41
138	Hepatitis C Virus Is a Weak Inducer of Interferon Alpha in Plasmacytoid Dendritic Cells in Comparison with Influenza and Human Herpesvirus Type-1. PLoS ONE, 2009, 4, e4319.	2.5	40
139	Neutralizing antibodies in hepatitis C virus infection. World Journal of Gastroenterology, 2007, 13, 4824.	3.3	40
140	Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Science Translational Medicine, 2022, 14, .	12.4	40
141	EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cellular Microbiology, 2013, 15, 1234-1252.	2.1	39
142	Follicular T helper cells shape the HCV-specific CD4+ T cell repertoire after virus elimination. Journal of Clinical Investigation, 2020, 130 , $998-1009$.	8.2	39
143	Ethanol-induced inhibition of leukotriene degradation by omega-oxidation. FEBS Journal, 1989, 182, 223-229.	0.2	38
144	Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Frontiers in Bioscience - Landmark, 2009, Volume, 3274.	3.0	38

#	Article	IF	CITATIONS
145	Hepatitis C Virus (HCV)–Apolipoprotein Interactions and Immune Evasion and Their Impact on HCV Vaccine Design. Frontiers in Immunology, 2018, 9, 1436.	4.8	38
146	Interleukinâ€32 Contributes to Human Nonalcoholic Fatty Liver Disease and Insulin Resistance. Hepatology Communications, 2019, 3, 1205-1220.	4.3	38
147	Both innate and adaptive immunity mediate protective immunity against hepatitis C virus infection in chimpanzees. Hepatology, 2011, 54, 1135-1148.	7.3	37
148	Targeting Viral Entry for Treatment of Hepatitis B and C Virus Infections. ACS Infectious Diseases, 2015, 1, 420-427.	3.8	36
149	Tight Junction Proteins and the Biology of Hepatobiliary Disease. International Journal of Molecular Sciences, 2020, 21, 825.	4.1	36
150	Hepatitis C virus vaccines – Progress and perspectives. Microbial Pathogenesis, 2013, 58, 66-72.	2.9	34
151	Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Reports, 2016, 17, 1357-1368.	6.4	34
152	Mapping Determinants of Virus Neutralization and Viral Escape for Rational Design of a Hepatitis C Virus Vaccine. Frontiers in Immunology, 2018, 9, 1194.	4.8	34
153	Oxidative Stress Triggers Selective tRNA Retrograde Transport in Human Cells during the Integrated Stress Response. Cell Reports, 2019, 26, 3416-3428.e5.	6.4	34
154	The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. IScience, 2021, 24, 103144.	4.1	34
155	CD81-Receptor Associations â€" Impact for Hepatitis C Virus Entry and Antiviral Therapies. Viruses, 2014, 6, 875-892.	3.3	33
156	Host-targeting agents for treatment of hepatitis B virus infection. Current Opinion in Virology, 2015, 14, 41-46.	5.4	33
157	Hepatitis B virus mutations potentially conferring adefovir/tenofovir resistance in treatment-naive patients. World Journal of Gastroenterology, 2009, 15, 753.	3.3	33
158	Hepatitis C virus infection and related liver disease: the quest for the best animal model. Frontiers in Microbiology, 2013, 4, 213.	3 . 5	32
159	Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therapeutic Advances in Gastroenterology, 2018, 11, 175628481875948.	3.2	32
160	Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging. Nanoscale, 2014, 6, 11676-11680.	5 . 6	31
161	The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses, 2019, 11, 758.	3.3	31
162	Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut, 2020, 69, 158-167.	12.1	31

#	Article	IF	Citations
163	Laparoscopic anatomical liver resection for malignancies using positive or negative staining technique with intraoperative indocyanine green-fluorescence imaging. Hpb, 2021, 23, 1647-1655.	0.3	31
164	Hypoxia inducible factors regulate hepatitis B virus replication by activating the basal core promoter. Journal of Hepatology, 2021, 75, 64-73.	3.7	31
165	A blood-based prognostic liver secretome signature and long-term hepatocellular carcinoma risk in advanced liver fibrosis. Med, 2021, 2, 836-850.e10.	4.4	31
166	Early Evolution of Hepatitis C Virus (HCV) Quasispecies after Liver Transplant for HCVâ€Related Disease. Journal of Infectious Diseases, 2007, 196, 528-536.	4.0	30
167	Monoclonal antiâ€envelope antibody AP33 protects humanized mice against a patientâ€derived hepatitis C virus challenge. Hepatology, 2016, 63, 1120-1134.	7.3	30
168	Pioglitazone Reduces Hepatocellular Carcinoma Development in Two Rodent Models of Cirrhosis. Journal of Gastrointestinal Surgery, 2019, 23, 101-111.	1.7	30
169	Comparative immunogenicity analysis of modified vaccinia Ankara vectors expressing native or modified forms of hepatitis C virus E1 and E2 glycoproteins. Vaccine, 2004, 22, 3917-3928.	3.8	29
170	Loss of hepatitis B surface antigen in a realâ€life clinical cohort of patients with chronic hepatitis B virus infection. Liver International, 2015, 35, 130-139.	3.9	29
171	Identification of Novel Functions for Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Journal of Virology, 2017, 91, .	3.4	29
172	Hepatitis C Virus Fails To Activate NF-κB Signaling in Plasmacytoid Dendritic Cells. Journal of Virology, 2012, 86, 1090-1096.	3.4	28
173	Functional Analysis of Claudin-6 and Claudin-9 as Entry Factors for Hepatitis C Virus Infection of Human Hepatocytes by Using Monoclonal Antibodies. Journal of Virology, 2013, 87, 10405-10410.	3.4	28
174	Circadian control of hepatitis B virus replication. Nature Communications, 2021, 12, 1658.	12.8	28
175	Capsid Assembly Modulators as Antiviral Agents against HBV: Molecular Mechanisms and Clinical Perspectives. Journal of Clinical Medicine, 2022, 11, 1349.	2.4	28
176	Toll-Like Receptor 2 Senses Hepatitis C Virus Core Protein but Not Infectious Viral Particles. Journal of Innate Immunity, 2009, 1, 446-454.	3.8	27
177	Hepatitis C virus cell entry: a target for novel antiviral strategies to address limitations of direct acting antivirals. Hepatology International, 2016, 10, 741-748.	4.2	27
178	Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. Journal of Clinical Medicine, 2020, 9, 3817.	2.4	27
179	Acute Mycoplasma pneumoniae Infection Presenting as Cholestatic Hepatitis. Journal of Clinical Microbiology, 2003, 41, 514-515.	3.9	26
180	Functional and Biochemical Characterization of Hepatitis C Virus (HCV) Particles Produced in a Humanized Liver Mouse Model. Journal of Biological Chemistry, 2015, 290, 23173-23187.	3.4	26

#	Article	IF	Citations
181	Perturbation of the circadian clock and pathogenesis of NAFLD. Metabolism: Clinical and Experimental, 2020, 111, 154337.	3.4	25
182	Metabolic inactivation of leukotrienes. Advances in Enzyme Regulation, 1989, 28, 307-319.	2.6	24
183	Additional Glycosylation Within a Specific Hypervariable Region of Subtype 3a of Hepatitis C Virus Protects Against Virus Neutralization. Journal of Infectious Diseases, 2013, 208, 1888-1897.	4.0	24
184	The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression. Nucleic Acids Research, 2008, 36, 3054-3064.	14.5	23
185	Neutralizing Antibodies and Pathogenesis of Hepatitis C Virus Infection. Viruses, 2012, 4, 2016-2030.	3.3	23
186	Humanisation of a claudin-1-specific monoclonal antibody for clinical prevention and cure of HCV infection without escape. Gut, 2017, 67, gutjnl-2016-312577.	12.1	23
187	Hepatitis B Virus Core Variants, Liver Fibrosis, and Hepatocellular Carcinoma. Hepatology, 2019, 69, 5-8.	7.3	23
188	Hepatitis B virus–host interactions and novel targets for viral cure. Current Opinion in Virology, 2021, 49, 41-51.	5.4	23
189	Impact of microRNAs for pathogenesis and treatment of hepatitis C virus infection. Gastroenterologie Clinique Et Biologique, 2010, 34, 431-435.	0.9	22
190	A first step towards a mouse model for hepatitis C virus infection containing a human immune system. Journal of Hepatology, 2011, 55, 718-720.	3.7	22
191	Multimodal imaging of a humanized orthotopic model of hepatocellular carcinoma in immunodeficient mice. Scientific Reports, 2016, 6, 35230.	3.3	22
192	Production of infectious hepatitis C virus in tissue culture: A breakthrough for basic and applied research. Journal of Hepatology, 2006, 44, 436-439.	3.7	21
193	Targeting a host-cell entry factor barricades antiviral-resistant HCV variants from on-therapy breakthrough in human-liver mice. Gut, 2016, 65, 2029-2034.	12.1	21
194	Interferonâ€Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology, 2019, 70, 1506-1520.	7.3	21
195	A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nature Communications, 2021, 12, 5525.	12.8	21
196	Host cell responses induced by hepatitis C virus binding. Hepatology, 2006, 43, 1326-1336.	7.3	20
197	Entry inhibitors and future treatment of hepatitis C. Antiviral Research, 2014, 104, 136-142.	4.1	20
198	Usefulness of corticosteroids as first-line therapy in patients with acute severe autoimmune hepatitis. Journal of Hepatology, 2016, 65, 444-446.	3.7	20

#	Article	IF	Citations
199	Functional microRNA screen uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus morphogenesis and infectivity. Gut, 2020, 69, 380-392.	12.1	20
200	A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism. PLoS Pathogens, 2018, 14, e1006908.	4.7	20
201	Frequent Compartmentalization of Hepatitis C Virus with Leukocyteâ€Related Amino Acids in the Setting of Liver Transplantation. Journal of Infectious Diseases, 2008, 198, 1656-1666.	4.0	19
202	Potent calcium phosphate nanoparticle surface coating for in vitro and in vivo siRNA delivery: a step toward multifunctional nanovectors. Journal of Materials Chemistry B, 2013, 1, 4692.	5.8	19
203	In Vivo Proof of Concept of Adoptive Immunotherapy for Hepatocellular Carcinoma Using Allogeneic Suicide Gene-modified Killer Cells. Molecular Therapy, 2014, 22, 634-644.	8.2	19
204	Host cell kinases and the hepatitis C virus life cycle. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1657-1662.	2.3	19
205	Oncogenic Signaling Induced by HCV Infection. Viruses, 2018, 10, 538.	3.3	19
206	New Insights into the Understanding of Hepatitis C Virus Entry and Cell-to-Cell Transmission by Using the Ionophore Monensin A. Journal of Virology, 2015, 89, 8346-8364.	3.4	18
207	A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo. Antiviral Research, 2017, 148, 53-64.	4.1	18
208	Distinct Intracellular Trafficking of Hepatitis C Virus in Myeloid and Plasmacytoid Dendritic Cells. Journal of Virology, 2010, 84, 8964-8969.	3.4	17
209	Genetically engineered T-cells expressing a ganciclovir-sensitive HSV-tk suicide gene for the prevention of GvHD. Current Opinion in Investigational Drugs, 2010, 11, 559-70.	2.3	17
210	Molecular Signature Predictive of Long-Term Liver Fibrosis Progression to Inform Antifibrotic Drug Development. Gastroenterology, 2022, 162, 1210-1225.	1.3	17
211	Precore mutants revisited. Hepatology, 1996, 23, 184-186.	7.3	16
212	RNAi – A powerful tool to unravel hepatitis C virus–host interactions within the infectious life cycle. Journal of Hepatology, 2008, 48, 523-525.	3.7	16
213	Roadblocks and fast tracks: How RNA binding proteins affect the viral RNA journey in the cell. Seminars in Cell and Developmental Biology, 2021, 111, 86-100.	5.0	16
214	Claudins in viral infection: from entry to spread. Pflugers Archiv European Journal of Physiology, 2017, 469, 27-34.	2.8	15
215	Hepatitis C virus–apolipoprotein interactions: molecular mechanisms and clinical impact. Expert Review of Proteomics, 2017, 14, 593-606.	3.0	15
216	The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses. Cellular and Molecular Life Sciences, 2018, 75, 3895-3905.	5.4	15

#	Article	IF	CITATIONS
217	Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors. Journal of General Virology, 2016, 97, 121-127.	2.9	15
218	Low perforin expression of early differentiated HCV-specific CD8+ T cells limits their hepatotoxic potential. Journal of Hepatology, 2012, 57, 9-16.	3.7	14
219	Clinical development of hepatitis C virus host-targeting agents. Lancet, The, 2017, 389, 674-675.	13.7	14
220	Signalome-wide assessment of host cell response to hepatitis C virus. Nature Communications, 2017, 8, 15158.	12.8	14
221	A cinnamon-derived procyanidin type A compound inhibits hepatitis C virus cell entry. Hepatology International, 2017, 11, 440-445.	4.2	14
222	Toll-like receptor dual-acting agonists are potent inducers of PBMC-produced cytokines that inhibit hepatitis B virus production in primary human hepatocytes. Scientific Reports, 2020, 10, 12767.	3.3	14
223	Genetic variation in IL-10 influences the progression of hepatitis B infection. International Journal of Infectious Diseases, 2020, 96, 260-265.	3.3	14
224	Hepatitis B virus receptors and molecular drug targets. Hepatology International, 2016, 10, 567-573.	4.2	13
225	A Recombinant Hepatitis C Virus Genotype 1a E1/E2 Envelope Glycoprotein Vaccine Elicits Antibodies That Differentially Neutralize Closely Related 2a Strains through Interactions of the N-Terminal Hypervariable Region 1 of E2 with Scavenger Receptor B1. Journal of Virology, 2019, 93, .	3.4	13
226	Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. Journal of Virology, 2018, 92, .	3.4	12
227	Hepatitis B Virus–Hepatocyte Interactions and Innate Immune Responses: Experimental Models and Molecular Mechanisms. Seminars in Liver Disease, 2019, 39, 301-314.	3.6	12
228	Targeting Viral cccDNA for Cure of Chronic Hepatitis B. Current Hepatology Reports, 2020, 19, 235-244.	0.9	12
229	Targeting the Host for New Therapeutic Perspectives in Hepatitis D. Journal of Clinical Medicine, 2020, 9, 222.	2.4	12
230	Hepatitis C virus infection and tight junction proteins: The ties that bind. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183296.	2.6	12
231	Interaction of hepatitis C virus envelope glycoprotein E2 with the large extracellular loop of tupaia CD81. World Journal of Gastroenterology, 2009, 15, 240.	3.3	12
232	Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatology Communications, 2022, 6, 2581-2593.	4.3	12
233	PI4K-beta and MKNK1 are regulators of hepatitis C virus IRES-dependent translation. Scientific Reports, 2015, 5, 13344.	3.3	11
234	Claudins and pathogenesis of viral infection. Seminars in Cell and Developmental Biology, 2015, 42, 39-46.	5.0	11

#	Article	IF	Citations
235	Addressing the Challenges of Hepatitis C Virus Resistance and Treatment Failure. Viruses, 2016, 8, 226.	3.3	11
236	Extracellular lipid-free apolipoprotein E inhibits HCV replication and induces ABCG1-dependent cholesterol efflux. Gut, 2017, 66, 896-907.	12.1	11
237	Zooming in on liver zonation. Hepatology, 2018, 67, 784-787.	7.3	11
238	A genome-wide gain-of-function screen identifies CDKN2C as a HBV host factor. Nature Communications, 2020, 11 , 2707.	12.8	11
239	Structures and Divergent Mechanisms in Capsid Maturation and Stabilization Following Genome Packaging of Human Cytomegalovirus and Herpesviruses. Life, 2021, 11, 150.	2.4	11
240	Liver Abnormalities after Elimination of HCV Infection: Persistent Epigenetic and Immunological Perturbations Post-Cure. Pathogens, 2021, 10, 44.	2.8	11
241	Host Genetics Predict Clinical Deterioration in HCV-Related Cirrhosis. PLoS ONE, 2014, 9, e114747.	2.5	11
242	Loss of hepatitis D virus infectivity upon farnesyl transferase inhibitor treatment associates with increasing RNA editing rates revealed by a new RT-ddPCR method. Antiviral Research, 2022, 198, 105250.	4.1	11
243	A bile acid transporter as a candidate receptor for hepatitis B and D virus entry. Journal of Hepatology, 2013, 58, 1246-1248.	3.7	10
244	Entry Inhibitors: A Perspective for Prevention of Hepatitis C Virus Infection in Organ Transplantation. ACS Infectious Diseases, 2017, 3, 620-623.	3.8	10
245	Repertoire and Neutralizing Activity of Antibodies Against Hepatitis C Virus E2 Peptide in Patients With Spontaneous Resolution of Hepatitis C. Journal of Infectious Diseases, 2019, 220, 1209-1218.	4.0	10
246	Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes. JCO Clinical Cancer Informatics, 2020, 4, 421-435.	2.1	10
247	Profound differences of microRNA expression patterns in hepatocytes and hepatoma cell lines commonly used in hepatitis C virus studies. Hepatology, 2011, 54, 1111-1112.	7.3	9
248	Hepatitis C Virus Envelope Glycoprotein Signatures Are Associated With Treatment Failure and Modulation of Viral Entry and Neutralization. Journal of Infectious Diseases, 2013, 207, 1306-1315.	4.0	9
249	High-throughput approaches to unravel hepatitis C virus-host interactions. Virus Research, 2016, 218, 18-24.	2.2	9
250	Abnormal liver tests and non-alcoholic fatty liver disease predict disease progression and outcome of patients with COVID-19. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 101894.	1.5	9
251	Abnormal Expression of Only the CD34 Part of a Transgenic CD34/Herpes Simplex Virus-Thymidine Kinase Fusion Protein Is Associated with Ganciclovir Resistance. Human Gene Therapy, 2008, 19, 699-709.	2.7	8
252	Challenges for HCV vaccine development in HIV–HCV coinfection. Expert Review of Vaccines, 2012, 11, 791-804.	4.4	8

#	Article	IF	CITATIONS
253	Interferon-lambda polymorphisms and hepatitis C virus clearance revisited. Hepatology, 2013, 58, 439-441.	7.3	8
254	Genotype 1 Hepatitis C Virus Envelope Features That Determine Antiviral Response Assessed through Optimal Covariance Networks. PLoS ONE, 2013, 8, e67254.	2.5	8
255	Hepatitis C virus infection of cholangiocarcinoma cell lines. Journal of General Virology, 2015, 96, 1380-1388.	2.9	8
256	Broad neutralization of hepatitis C virusâ€resistant variants by Civacir hepatitis C immunoglobulin. Hepatology, 2016, 64, 1495-1506.	7.3	8
257	Liver Cirrhosis in Chronic Hepatitis B Patients Is Associated with Genetic Variations in DNA Repair Pathway Genes. Cancers, 2020, 12, 3295.	3.7	8
258	Silencing of the HBV episome through degradation of HBx protein: Towards functional cure?. Journal of Hepatology, 2021, 74, 497-499.	3.7	8
259	Nucleic Acid-Induced Signaling in Chronic Viral Liver Disease. Frontiers in Immunology, 2020, 11, 624034.	4.8	8
260	Cell Culture Models for the Study of Hepatitis D Virus Entry and Infection. Viruses, 2021, 13, 1532.	3.3	8
261	Inflammatory Gene Expression Associates with Hepatitis B Virus cccDNA- but Not Integrant-Derived Transcripts in HBeAg Negative Disease. Viruses, 2022, 14, 1070.	3.3	8
262	Severe cerebral vasculitis as primary manifestation of hepatitis B-associated polyarteritis nodosa. Journal of Hepatology, 2002, 37, 414-416.	3.7	7
263	A novel target of hepatitis B virus mutations: Splicing of surface RNA. Hepatology, 2005, 42, 21-23.	7.3	7
264	HCV entry and neutralizing antibodies: lessons from viral variants. Future Microbiology, 2009, 4, 511-517.	2.0	7
265	Rapid synchronization of hepatitis C virus infection by magnetic adsorption. Journal of Virological Methods, 2009, 157, 69-79.	2.1	7
266	Acute infection with a single hepatitis C virus strain in dialysis patients: Analysis of adaptive immune response and viral variability. Journal of Hepatology, 2009, 50, 693-704.	3.7	7
267	Host and viral determinants for engraftment of virus permissive human hepatocytes into chimeric immunodeficient mice. Journal of Hepatology, 2010, 53, 421-423.	3.7	7
268	Cholesterol uptake and hepatitis C virus entry. Journal of Hepatology, 2012, 57, 215-217.	3.7	7
269	Multifaceted role of E-cadherin in hepatitis C virus infection and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7298-7300.	7.1	7
270	Addressing the next challenges: A summary of the 22nd international symposium on hepatitis C virus and related viruses. Journal of Hepatology, 2016, 64, 968-973.	3.7	7

#	Article	IF	CITATIONS
271	An E. coli-produced single-chain variable fragment (scFv) targeting hepatitis B virus surface protein potently inhibited virion secretion. Antiviral Research, 2019, 162, 118-129.	4.1	7
272	Rewiring Host Signaling: Hepatitis C Virus in Liver Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037366.	6.2	7
273	The Nobel Prize in Medicine 2020 for the Discovery of Hepatitis CÂVirus: Transforming Hepatology. Journal of Hepatology, 2020, 73, 1303-1305.	3.7	7
274	EWI-2wint – A host cell factor inhibiting hepatitis C virus entry. Journal of Hepatology, 2009, 50, 222-224.	3.7	6
275	Unraveling hepatitis C virus structure. Cell Research, 2014, 24, 385-386.	12.0	6
276	Advancing hepatitis B virus entry inhibitors. Journal of Hepatology, 2017, 66, 677-679.	3.7	6
277	Functional Study of the C-Terminal Part of the Hepatitis C Virus E1 Ectodomain. Journal of Virology, 2018, 92, .	3.4	6
278	Uncovering the mechanism of action of aspirin in HCC chemoprevention. EBioMedicine, 2019, 46, 21-22.	6.1	6
279	Profibrotic Signaling and HCC Risk during Chronic Viral Hepatitis: Biomarker Development. Journal of Clinical Medicine, 2021, 10, 977.	2.4	6
280	Conservation of hepatitis C virus nonstructural protein 3 amino acid sequence in viral isolates during liver transplantation. Journal of Viral Hepatitis, 2009, 16, 732-737.	2.0	5
281	Hepatitis C virus co-opts innate immunity component for lipid droplet formation. Journal of Hepatology, 2013, 59, 1118-1120.	3.7	5
282	Tracking HCV protease population diversity during transmission and susceptibility of founder populations to antiviral therapy. Antiviral Research, 2017, 139, 129-137.	4.1	5
283	Beyond viral dependence: The pathological consequences of HCV-induced EGF signaling. Journal of Hepatology, 2018, 69, 564-566.	3.7	5
284	Addressing the Challenges of Hepatitis C Cure and Persistent Risk of Hepatocellular Carcinoma. Viruses, 2019, 11, 441.	3.3	5
285	Unraveling the role of liver sinusoidal endothelial cells in COVID-19 liver injury. Journal of Hepatology, 2021, 75, 503-505.	3.7	5
286	Stromal and Immune Drivers of Hepatocarcinogenesis. Molecular and Translational Medicine, 2019, , $317-331$.	0.4	5
287	Occludin stalls HCV particle dynamics apart from hepatocyte tight junctions, promoting virion internalization. Hepatology, 2022, 76, 1164-1179.	7.3	5
288	Boceprevir and personalized medicine in hepatitis C virus infection. Pharmacogenomics and Personalized Medicine, 2012, Volume 5, 125-137.	0.7	4

#	Article	IF	CITATIONS
289	Acute hepatitis C virus infection induces antiâ€host cell receptor antibodies with virusâ€neutralizing properties. Hepatology, 2015, 62, 726-736.	7.3	4
290	Composite vector formulation for multiple siRNA delivery as a host targeting antiviral in a cell culture model of hepatitis C virus (HCV) infection. Journal of Materials Chemistry B, 2017, 5, 858-865.	5.8	4
291	Mortality from liver cirrhosis and HCC in the DAA era: success in viral control is darkened by raise of metabolic disease. Hepatobiliary Surgery and Nutrition, 2019, 8, 307-310.	1.5	4
292	In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection. Antiviral Research, 2019, 162, 136-141.	4.1	4
293	Characterisation of endogenous Claudinâ€1 expression, motility and susceptibility to hepatitis C virus in CRISPR knockâ€in cells. Biology of the Cell, 2020, 112, 140-151.	2.0	4
294	Hepatitis B virus compartmentalization and single-cell differentiation in hepatocellular carcinoma. Life Science Alliance, 2021, 4, e202101036.	2.8	4
295	Safety and Antiviral Activity of EGFR Inhibition by Erlotinib in Chronic Hepatitis C Patients: A Phase Ib Randomized Controlled Trial. Clinical and Translational Gastroenterology, 2022, 13, e00492.	2.5	4
296	Hepatocellular carcinoma chemoprevention by targeting the angiotensin-converting enzyme and EGFR transactivation. JCI Insight, 2022, 7, .	5.0	4
297	Adaptive Immunity to Hepatitis C Virus. Viruses, 2009, 1, 276-297.	3.3	3
298	Tight junctions and viral entry. Future Virology, 2010, 5, 263-271.	1.8	3
299	Hepatitis C virus entry and glucocorticosteroids. Journal of Hepatology, 2010, 53, 1148-1150.	3.7	3
300	Opening the door for hepatitis C virus infection in genetically humanized mice. Hepatology, 2011, 54, 1873-1875.	7.3	3
301	A new HCV mouse model on the block. Cell Research, 2014, 24, 1153-1154.	12.0	3
302	Overcoming the roadblocks in hepatitis C virus infection. Journal of Hepatology, 2014, 61, S1-S2.	3.7	3
303	HCV Receptors and Virus Entry. , 2016, , 81-103.		3
304	Learning from a clinical cohort for HCV vaccine development. Journal of Hepatology, 2019, 71, 9-11.	3.7	3
305	New Insights into Human Cytomegalovirus pUL52 Structure. Viruses, 2021, 13, 1638.	3.3	3
306	Influence of gender on cytokine induced depression and treatment. Journal of Affective Disorders, 2021, 292, 766-772.	4.1	3

#	Article	IF	Citations
307	Hepatitis C virus internalization. Virologie, 2013, 17, 401-413.	0.1	3
308	Pseudomonas exotoxin antisense RNA selectively kills hepatitis B virus infected cells. World Journal of Gastroenterology, 2008, 14, 2810.	3.3	3
309	Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. International Journal of Molecular Sciences, 2022, 23, 2787.	4.1	3
310	Highjacking of PI3K/AKT signaling pathway by Hepatitis C virus in TLR9-activated human plasmacytoid dendritic cells. Retrovirology, 2010, 7, .	2.0	2
311	Getting closer to the patient: Upgrade of hepatitis C virus infection in primary human hepatocytes. Journal of Hepatology, 2010, 53, 388-389.	3.7	2
312	Triglyceride synthesis and hepatitis C virus production: Identification of a novel host factor as antiviral target. Hepatology, 2011, 53, 1046-1048.	7.3	2
313	Genetically humanized mice recapitulate the entire hepatitis C virus life cycle. Journal of Hepatology, 2014, 60, 671-673.	3.7	2
314	Cyclic guanosine monophosphate/adenosine monophosphate synthase (cGAS), innate immune responses, and viral hepatitis. Hepatology, 2014, 60, 1098-1100.	7.3	2
315	Retinoic acidâ€inducible gene 1 and sensing of hepatitis B virus revisited. Hepatology, 2015, 62, 970-972.	7.3	2
316	When one receptor closes, another opens: Claudins and the hepatitis C virus E1 glycoprotein. Hepatology, 2015, 62, 991-993.	7.3	2
317	Prevention of hepatitis C virus infection by adoptive allogeneic immunotherapy using suicide gene-modified lymphocytes: an in vitro proof-of-concept. Gene Therapy, 2015, 22, 172-180.	4.5	2
318	Ultrasoundâ€Guided Approaches to Improve Orthotopic Mouse Xenograft Models for Hepatocellular Carcinoma. Current Protocols in Mouse Biology, 2019, 9, e62.	1.2	2
319	Virus-host interactions during hepatitis C virus entry — implications for pathogenesis and novel treatment approaches. Virologica Sinica, 2008, 23, 124-131.	3.0	1
320	Closing the gap: The tight junction protein occludin and hepatitis C virus entry. Hepatology, 2009, 49, 1770-1772.	7.3	1
321	Synthetic anti-lipopolysaccharide peptides and hepatitis C virus infection. Expert Opinion on Investigational Drugs, 2013, 22, 853-862.	4.1	1
322	Use of a Closed Culture System to Improve the Safety of Lentiviral Vector Production. Human Gene Therapy Methods, 2015, 26, 197-210.	2.1	1
323	A new HCV cell culture model for the next clinical challenges. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 611-613.	17.8	1
324	Circulating microRNAs for early detection of hepatitis B-related hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2016, 5, 198-200.	1.5	1

#	Article	IF	CITATIONS
325	Editorial overview: Viral resistance and challenges for antiviral therapies and vaccines. Current Opinion in Virology, 2016, 20, vi-vii.	5.4	1
326	Hepatitis B virus: is a cure possible?. Expert Review of Clinical Pharmacology, 2016, 9, 1129-1130.	3.1	1
327	SCARB1 variants and HCV infection: Host susceptibility is lost in translation. Journal of Hepatology, 2017, 67, 211-213.	3.7	1
328	Toward novel immunocompetent animal models for hepatitis B virus infection. Hepatology, 2017, 66, 691-693.	7.3	1
329	SMAD About Hepatitis C Virus Cell Entry andÂLiver Disease. Gastroenterology, 2017, 152, 21-23.	1.3	1
330	Editorial: Current Progress and Challenges in the Development of a B Cell Based Hepatitis C Virus Vaccine. Frontiers in Immunology, 2018, 9, 2577.	4.8	1
331	Contrast-enhanced ultrasound for non-invasive diagnosis of hepatocellular carcinoma: A comparison between CEUS LI-RADS and ESCULAP criteria in a large high-risk cohort of patients. Journal of Hepatology, 2018, 68, S417-S418.	3.7	1
332	Safe administration of corticosteroids in severe ulcerative colitis and active SARS-CoV2 infection. Digestive and Liver Disease, 2020, 52, 1257-1258.	0.9	1
333	CD147 handles lipid: a new role for anti-cancer target. Translational Cancer Research, 2016, 5, 238-240.	1.0	1
334	FIB-4 score and hepatocellular carcinoma risk after hepatitis C virus cure: time to revise surveillance?. Hepatobiliary Surgery and Nutrition, 2020, 9, 661-664.	1.5	1
335	Virus-Induced Risk of Hepatocellular Carcinoma: Recent Progress and Future Challenges. Journal of Clinical Medicine, 2022, 11 , 208.	2.4	1
336	Tupaia belangeri as a Model for Hepatitis C Virus Infection. , 2005, 25, 106-118.		0
337	449 Hepatitis C virus structural proteins and activation of Toll-like receptors 2 and 4. Journal of Hepatology, 2006, 44, S167-S168.	3.7	0
338	Hepatitis C virus fails to activate NF-kappaB signaling in plasmacytoid dendritic cells. Retrovirology, 2012, 9, .	2.0	0
339	Viral factors and outcome of chronic hepatitis B revisited. Hepatology International, 2013, 7, 945-947.	4.2	0
340	Modeling the antiviral activity of ribavirin against hepatitis C virus in cell culture. Hepatology, 2013, 58, 1203-1206.	7.3	0
341	New tool for the study of hepatitis C virus genotype 3 and its associated liver disease biology. Hepatology, 2014, 60, 1806-1808.	7.3	0
342	A microRNA screen uncovers O-Linked N-Acetylglucosamine transferase as a host factor involved in hepatitis C virus morphogenesis. Journal of Hepatology, 2018, 68, S62-S63.	3.7	0

#	Article	IF	CITATIONS
343	Excess weight has a major impact on hepatic fibrosis by users of psychoactive substance. Journal of Hepatology, 2018, 68, S566-S567.	3.7	0
344	Estrogen receptor R1 and CAD are host factors for HDV replication and antiviral targets. Journal of Hepatology, 2018, 68, S787-S788.	3.7	0
345	Reply. Hepatology, 2019, 70, 766-766.	7.3	0
346	Letter to the Editor: Abdominal Surgery in Idiopathic Noncirrhotic Portal Hypertension: Is Preemptive TIPS Reducing Postoperative Complications?. Hepatology, 2020, 71, 1520-1522.	7.3	0
347	Intraabdominal urokinase in the treatment of loculated infected ascites in cirrhosis. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101486.	1.5	0
348	A Blood-Based Prognostic Liver Secretome Signature and Long-Term Hepatocellular Carcinoma Risk in Advanced Liver Fibrosis. SSRN Electronic Journal, 0, , .	0.4	0
349	"We can and should do better― an interview with the 2020 Nobel prize laureates who revolutionized hepatology. Journal of Hepatology, 2021, 75, 267-270.	3.7	0
350	Proposition d'une nouvelle stratégie pour éviter la réinfection du greffon par le virus de l'hépatit aprÃ's transplantation hépatique. Bulletin De L'Academie Nationale De Medecine, 2008, 192, 1657-1668.	e C.o	0
351	Molecular Mechanisms of Hepatitis C Virus Entry – Impact of Host Cell Factors for Initiation of Viral Infection. , 2015, , 189-202.		0
352	FIB-4 score and hepatocellular carcinoma risk after hepatitis C virus cure: time to revise surveillance?. Hepatobiliary Surgery and Nutrition, 2020, 9, 661-664.	1.5	0
353	Liver cell circuits and therapeutic discovery for advanced liver disease and cancer. Comptes Rendus - Biologies, 2021, 344, 233-248.	0.2	0