Paola Deplano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6636050/publications.pdf

Version: 2024-02-01

471509 434195 34 976 17 31 citations h-index g-index papers 34 34 34 1188 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Progress and perspectives on strategies to control photochemical properties in Metallo-Dithiolene Donor-Acceptor systems. Inorganica Chimica Acta, 2022, 531, 120731.	2.4	1
2	Insight into the Properties of Heteroleptic Metal Dithiolenes: Multistimuli Responsive Luminescence, Chromism, and Nonlinear Optics. Inorganic Chemistry, 2021, 60, 9332-9344.	4.0	3
3	Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/l2 Mixtures. Molecules, 2021, 26, 4721.	3.8	6
4	Single-component panchromatic white light generation, and tuneable excimer-like visible orange and NIR emission in a Dy quinolinolate complex. Journal of Materials Chemistry C, 2021, 9, 15641-15648.	5.5	7
5	Multiâ€Magnetic Properties of a Novel SCO [Fe(3â€OMeâ€Sal 2 trien)][Fe(tdas) 2]·CH 3 CN Salt. European Journal of Inorganic Chemistry, 2020, 2020, 4556-4567.	2.0	3
6	Anti-Kasha Conformational Photoisomerization of a Heteroleptic Dithiolene Metal Complex Revealed by Ultrafast Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 10687-10693.	2.5	8
7	Design of nickel donor–acceptor dithiolenes for 2nd order nonlinear optics: an experimental and computational study. New Journal of Chemistry, 2019, 43, 12570-12579.	2.8	7
8	Advances in Recovering Noble Metals from Waste Printed Circuit Boards (WPCBs). ACS Sustainable Chemistry and Engineering, 2019, 7, 1308-1317.	6.7	52
9	Molecular engineering of heteroleptic metal-dithiolene complexes with optimized second-order NLO response. Inorganica Chimica Acta, 2018, 470, 295-302.	2.4	16
10	Uncommon Optical Properties and Silverâ€Responsive Turnâ€Off/On Luminescence in a Pt ^{II} Heteroleptic Dithiolene Complex. Chemistry - A European Journal, 2018, 24, 10503-10512.	3.3	8
11	Ionic Couple-Driven Palladium Leaching by Organic Triiodide Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 4359-4370.	6.7	12
12	Optically Multiresponsive Heteroleptic Platinum Dithiolene Complex with Proton-Switchable Properties. Inorganic Chemistry, 2017, 56, 6763-6767.	4.0	16
13	From recovered metal waste to high-performance palladium catalysts. Green Chemistry, 2017, 19, 5846-5853.	9.0	18
14	A Platinum–Dithiolene Monoanionic Salt Exhibiting Multiproperties, Including Room-Temperature Proton-Dependent Solution Luminescence. Inorganic Chemistry, 2016, 55, 5118-5126.	4.0	5
15	Tailoring functionality through synthetic strategy in heterolanthanide assemblies. Inorganic Chemistry Frontiers, 2015, 2, 213-222.	6.0	17
16	Structural changes in M ^{II} dithione/dithiolato complexes (M = Ni, Pd, Pt) on varying the dithione functionalization. CrystEngComm, 2015, 17, 4161-4171.	2.6	6
17	Chameleon behaviour of iodine in recovering noble-metals from WEEE: towards sustainability and "zero―waste. Green Chemistry, 2015, 17, 2208-2216.	9.0	37
18	Ln ₃ Q ₉ as a Molecular Framework for Ionâ€Sizeâ€Driven Assembly of Heterolanthanide (Nd, Er, Yb) Multiple Nearâ€Infrared Emitters. Chemistry - A European Journal, 2015, 21, 3882-3885.	3.3	26

#	Article	IF	CITATIONS
19	Ultrafast electronic and vibrational relaxations in mixed-ligand dithione–dithiolato Ni, Pd, and Pt complexes. Dalton Transactions, 2014, 43, 17666-17676.	3.3	24
20	Role of the Acceptor in Tuning the Properties of Metal [M(II) = Ni, Pd, Pt] Dithiolato/Dithione (Donor/Acceptor) Second-Order Nonlinear Chromophores: Combined Experimental and Theoretical Studies. Inorganic Chemistry, 2014, 53, 1170-1183.	4.0	33
21	Mixed-ligand Pt(ii) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties. Dalton Transactions, 2012, 41, 3485.	3.3	41
22	Redox-Switchable Chromophores Based on Metal (Ni, Pd, Pt) Mixed-Ligand Dithiolene Complexes Showing Molecular Second-Order Nonlinear-Optical Activity. Inorganic Chemistry, 2011, 50, 2058-2060.	4.0	53
23	Combined Experimental and Theoretical Study on Redox-Active d ⁸ Metal Dithione–Dithiolato Complexes Showing Molecular Second-Order Nonlinear Optical Activity. Inorganic Chemistry, 2011, 50, 10015-10027.	4.0	46
24	Square-planar d8 metal mixed-ligand dithiolene complexes as second order nonlinear optical chromophores: Structure/property relationship. Coordination Chemistry Reviews, 2010, 254, 1434-1447.	18.8	126
25	Ultrafast Dynamics of Intersystem Crossing and Resonance Energy Transfer in Er(III)â^'Quinolinolate Complexes. Journal of Physical Chemistry Letters, 2010, 1, 2733-2737.	4.6	27
26	Square-planar d8 metal push–pull dithiolene complexes: Synthesis and characterization of [Pd(Me2pipdt)(dmit)]. Inorganic Chemistry Communication, 2009, 12, 490-493.	3.9	18
27	Charge transfer complexes of dithioxamides with dihalogens as powerful reagents in the dissolution of noble metals. Coordination Chemistry Reviews, 2008, 252, 1200-1212.	18.8	34
28	Synthesis, Structure, Spectroscopic Studies and Magnetic Properties of the Tetrakis(5,7â€dichloroâ€8â€quinolinolato)gadolinium(III) Complex. European Journal of Inorganic Chemistry, 2008, 2008, 3820-3826.	2.0	19
29	Pd-Dissolution through a mild and effective one-step reaction and its application for Pd-recovery from spent catalytic converters. Chemical Communications, 2005, , 1040.	4.1	42
30	A two-dimensional radical salt based upon BEDT-TTF and the dimeric, magnetic anion [Fe(tdas)2]22 \hat{a} : (BEDT-TTF)2[Fe(tdas)2] (tdas = 1,2,5-thiadiazole-3,4-dithiolate). Journal of Materials Chemistry, 2002, 12, 3570-3577.	6.7	22
31	(BETS)2[Fe(tdas)2]2: a new metal in the molecular conductor family. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m240-m242.	0.4	14
32	Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor-I2 adducts. Coordination Chemistry Reviews, 1999, 188, 71-95.	18.8	190
33	A powerful new oxidation agent towards metallic gold powder: N,N′-dimethylperhydrodiazepine-2,3-dithione (D) bis(diiodine). Synthesis and X-ray structure of [AuDl2]I3. Chemical Communications, 1998, , 2351-2352.	4.1	36
34	From Recovered Palladium to Molecular and Nanoscale Catalysts. ACS Sustainable Chemistry and Engineering, $0, , .$	6.7	3