

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6636030/publications.pdf

Version: 2024-02-01

XII VIIF

#	Article	IF	CITATIONS
1	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
2	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	9.9	663
3	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	12.8	420
4	Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013. Environmental Science and Technology Letters, 2020, 7, 240-247.	8.7	255
5	Particulate air pollution from wildfires in the Western US under climate change. Climatic Change, 2016, 138, 655-666.	3.6	219
6	Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmospheric Environment, 2013, 77, 767-780.	4.1	200
7	Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties. Epidemiology, 2017, 28, 77-85.	2.7	175
8	Ozone and haze pollution weakens net primary productivity in China. Atmospheric Chemistry and Physics, 2017, 17, 6073-6089.	4.9	169
9	Sources contributing to background surface ozone in the US Intermountain West. Atmospheric Chemistry and Physics, 2014, 14, 5295-5309.	4.9	114
10	Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations. Lancet Planetary Health, The, 2021, 5, e579-e587.	11.4	109
11	Meteorological influences on PM2.5 and O3 trends and associated health burden since China's clean air actions. Science of the Total Environment, 2020, 744, 140837.	8.0	98
12	Fire air pollution reduces global terrestrial productivity. Nature Communications, 2018, 9, 5413.	12.8	95
13	Ozone pollution threatens the production of major staple crops in East Asia. Nature Food, 2022, 3, 47-56.	14.0	93
14	Ozone vegetation damage effects on gross primary productivity in the United States. Atmospheric Chemistry and Physics, 2014, 14, 9137-9153.	4.9	82
15	The Yale Interactive terrestrial Biosphere model version 1.0: description, evaluation and implementation into NASA GISS ModelE2. Geoscientific Model Development, 2015, 8, 2399-2417.	3.6	73
16	Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States. Atmospheric Chemistry and Physics, 2016, 16, 14687-14702.	4.9	73
17	Persistent ozone pollution episodes in North China exacerbated by regional transport. Environmental Pollution, 2020, 265, 115056.	7.5	63
18	Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China. Atmospheric Chemistry and Physics, 2017, 17, 1329-1342.	4.9	59

#	Article	IF	CITATIONS
19	Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmospheric Research, 2021, 249, 105363.	4.1	59
20	Simulation of dust aerosol radiative feedback using the Global Transport Model of Dust: 1. Dust cycle and validation. Journal of Geophysical Research, 2009, 114, .	3.3	55
21	Impact of 2050 climate change on North American wildfire: consequences for ozone air quality. Atmospheric Chemistry and Physics, 2015, 15, 10033-10055.	4.9	54
22	Fast Climate Responses to Aerosol Emission Reductions During the COVIDâ€19 Pandemic. Geophysical Research Letters, 2020, 47, e2020GL089788.	4.0	51
23	Simulation of dust aerosol radiative feedback using the GMOD: 2. Dustâ€climate interactions. Journal of Geophysical Research, 2010, 115, .	3.3	45
24	Mitigation of ozone damage to the world's land ecosystems by source sector. Nature Climate Change, 2020, 10, 134-137.	18.8	44
25	Source Contributions to Ambient Fine Particulate Matter for Canada. Environmental Science & Technology, 2019, 53, 10269-10278.	10.0	42
26	Observed aerosol-induced radiative effect on plant productivity in the eastern United States. Atmospheric Environment, 2015, 122, 463-476.	4.1	41
27	Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmospheric Chemistry and Physics, 2011, 11, 6049-6062.	4.9	40
28	Probing the past 30-year phenology trend of US deciduous forests. Biogeosciences, 2015, 12, 4693-4709.	3.3	40
29	Projection of wildfire activity in southern California in the mid-twenty-first century. Climate Dynamics, 2014, 43, 1973-1991.	3.8	38
30	Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades. Atmospheric Chemistry and Physics, 2015, 15, 11931-11948.	4.9	38
31	Strong chemistryâ€climate feedbacks in the Pliocene. Geophysical Research Letters, 2014, 41, 527-533.	4.0	37
32	Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China. Atmospheric Research, 2020, 237, 104859.	4.1	37
33	Risk and burden of hospital admissions associated with wildfire-related PM2·5 in Brazil, 2000–15: a nationwide time-series study. Lancet Planetary Health, The, 2021, 5, e599-e607.	11.4	37
34	Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience, 2022, 15, 349-355.	12.9	37
35	Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmospheric Environment, 2021, 244, 117905.	4.1	36
36	Emerging challenges of ozone impacts on asian plants: actions are needed to protect ecosystem health and Sustainability, 2021, 7, .	3.1	32

#	Article	IF	CITATIONS
37	Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agricultural and Forest Meteorology, 2021, 296, 108227.	4.8	29
38	Simulation of the Direct Radiative Effect of Mineral Dust Aerosol on the Climate at the Last Glacial Maximum. Journal of Climate, 2011, 24, 843-858.	3.2	28
39	Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China. Advances in Atmospheric Sciences, 2020, 37, 1297-1309.	4.3	27
40	Relationships between photosynthesis and formaldehyde as a probe of isoprene emission. Atmospheric Chemistry and Physics, 2015, 15, 8559-8576.	4.9	23
41	Impacts of aerosol pollutant mitigation on lowland rice yields in China. Environmental Research Letters, 2017, 12, 104003.	5.2	22
42	An intercomparative study of the effects of aircraft emissions on surface air quality. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8325-8344.	3.3	21
43	Aerosol climate change effects on land ecosystem services. Faraday Discussions, 2017, 200, 121-142.	3.2	19
44	Direct climatic effect of dust aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3). Advances in Atmospheric Sciences, 2010, 27, 230-242.	4.3	18
45	Limited effect of ozone reductions on the 20â€year photosynthesis trend at Harvard forest. Global Change Biology, 2016, 22, 3750-3759.	9.5	18
46	Ozone–vegetation feedback through dry deposition and isoprene emissions in aÂglobal chemistry–carbon–climate model. Atmospheric Chemistry and Physics, 2020, 20, 3841-3857.	4.9	18
47	Projections of changes in ecosystem productivity under 1.5°C and 2°C global warming. Global and Planetary Change, 2021, 205, 103588.	3.5	18
48	Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum. Climate Dynamics, 2012, 39, 3019-3040.	3.8	17
49	Modeling the joint impacts of ozone and aerosols on crop yields in China: An air pollution policy scenario analysis. Atmospheric Environment, 2021, 247, 118216.	4.1	17
50	Global Perspective of Drought Impacts on Ozone Pollution Episodes. Environmental Science & Technology, 2022, 56, 3932-3940.	10.0	17
51	Numerical modeling of ozone damage to plants and its effects on atmospheric CO2 in China. Atmospheric Environment, 2019, 217, 116970.	4.1	16
52	Implementation of Yale Interactive terrestrial Biosphere model v1.0 into GEOS-Chem v12.0.0: a tool for biosphere–chemistry interactions. Geoscientific Model Development, 2020, 13, 1137-1153.	3.6	16
53	Large Contributions of Diffuse Radiation to Global Gross Primary Productivity During 1981–2015. Global Biogeochemical Cycles, 2021, 35, e2021GB006957.	4.9	16
54	Predominant Type of Dust Storms That Influences Air Quality Over Northern China and Future Projections. Earth's Future, 2022, 10, .	6.3	16

#	Article	IF	CITATIONS
55	Enhanced PM 2.5 Decreases and O 3 Increases in China During COVIDâ€19 Lockdown by Aerosolâ€Radiation Feedback. Geophysical Research Letters, 2021, 48, e2020GL090260.	4.0	15
56	Projected Aerosol Changes Driven by Emissions and Climate Change Using a Machine Learning Method. Environmental Science & Technology, 2022, 56, 3884-3893.	10.0	15
57	Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America. Atmospheric Chemistry and Physics, 2017, 17, 13699-13719.	4.9	14
58	Impacts of Ozoneâ€Vegetation Interactions on Ozone Pollution Episodes in North China and the Yangtze River Delta. Geophysical Research Letters, 2021, 48, e2021GL093814.	4.0	14
59	Biogenic volatile organic compound emissions from leaves and fruits of apple and peach trees during fruit development. Journal of Environmental Sciences, 2021, 108, 152-163.	6.1	14
60	Air pollution from wildfires and human health vulnerability in Alaskan communities under climate change. Environmental Research Letters, 2020, 15, 094019.	5.2	13
61	Aerosol radiative and climatic effects on ecosystem productivity and evapotranspiration. Current Opinion in Environmental Science and Health, 2021, 19, 100218.	4.1	13
62	Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017. Atmospheric Chemistry and Physics, 2022, 22, 7131-7142.	4.9	13
63	The springtime North Asia cyclone activity index and the Southern Annular Mode. Advances in Atmospheric Sciences, 2008, 25, 673-679.	4.3	12
64	A humidity-based exposure index representing ozone damage effects on vegetation. Environmental Research Letters, 2021, 16, 044030.	5.2	12
65	Climate effects of stringent air pollution controls mitigate future maize losses in China. Environmental Research Letters, 2018, 13, 124011.	5.2	11
66	Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to simulate the interaction between land surface processes and atmospheric boundary layer in semi-arid regions. Advances in Atmospheric Sciences, 2004, 21, 245-259.	4.3	10
67	Impact of diffuse radiation on evapotranspiration and its coupling to carbon fluxes at global FLUXNET sites. Agricultural and Forest Meteorology, 2022, 322, 109006.	4.8	10
68	Pathway dependence of ecosystem responses in China to 1.5 °C global warming. Atmospheric Chemistry and Physics, 2020, 20, 2353-2366.	4.9	9
69	Decreased Anthropogenic CO2 Emissions during the COVID-19 Pandemic Estimated from FTS and MAX-DOAS Measurements at Urban Beijing. Remote Sensing, 2021, 13, 517.	4.0	9
70	Ensemble projection of global isoprene emissions by the end of 21st century using CMIP6 models. Atmospheric Environment, 2021, 267, 118766.	4.1	9
71	Linking the Fasting Blood Glucose Level to Short-Term-Exposed Particulate Constituents and Pollution Sources: Results from a Multicenter Cross-Sectional Study in China. Environmental Science & Technology, 2022, 56, 10172-10182.	10.0	8
72	Projection of weather potential for winter haze episodes in Beijing by 1.5°C and 2.0°C global warming. Advances in Climate Change Research, 2020, 11, 218-226.	5.1	6

#	Article	IF	CITATIONS
73	Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect. Atmospheric Chemistry and Physics, 2022, 22, 693-709.	4.9	6
74	Contribution of Fire Emissions to PM _{2.5} and Its Transport Mechanism Over the Yungui Plateau, China During 2015–2019. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
75	Widespread Wildfires Over the Western United States in 2020 Linked to Emissions Reductions During COVIDâ€19. Geophysical Research Letters, 2022, 49, .	4.0	6
76	Indirect contributions of global fires to surface ozone through ozone–vegetation feedback. Atmospheric Chemistry and Physics, 2021, 21, 11531-11543.	4.9	5
77	Identifying the dominant climate-driven uncertainties in modeling gross primary productivity. Science of the Total Environment, 2021, 800, 149518.	8.0	5
78	Relieved drought in China under a low emission pathway to 1.5°C global warming. International Journal of Climatology, 2021, 41, E259.	3.5	3
79	Mitigating ozone damage to ecosystem productivity through sectoral and regional emission controls: a case study in the Yangtze River Delta, China. Environmental Research Letters, 2022, 17, 065008.	5.2	2
80	Identifying the Drivers of Modeling Uncertainties in Isoprene Emissions: Schemes Versus Meteorological Forcings. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034242.	3.3	0