Anthony Rosenzweig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature, 1999, 398, 718-723.	13.7	1,161
2	Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 2006, 12, 908-916.	15.2	1,058
3	HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature, 2008, 451, 1008-1012.	13.7	954
4	Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival. Cell, 2007, 130, 1095-1107.	13.5	855
5	Akt Activation Preserves Cardiac Function and Prevents Injury After Transient Cardiac Ischemia In Vivo. Circulation, 2001, 104, 330-335.	1.6	673
6	Transcriptional coactivator PGC-1 \hat{l} ± controls the energy state and contractile function of cardiac muscle. Cell Metabolism, 2005, 1, 259-271.	7.2	608
7	Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging, 2010, 2, 914-923.	1.4	462
8	Restoration of Contractile Function in Isolated Cardiomyocytes From Failing Human Hearts by Gene Transfer of SERCA2a. Circulation, 1999, 100, 2308-2311.	1.6	454
9	Phenotypic Spectrum Caused by Transgenic Overexpression of Activated Akt in the Heart. Journal of Biological Chemistry, 2002, 277, 22896-22901.	1.6	391
10	C/EBPβ Controls Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling. Cell, 2010, 143, 1072-1083.	13.5	375
11	Adenoviral Gene Transfer of Activated Phosphatidylinositol 3′-Kinase and Akt Inhibits Apoptosis of Hypoxic Cardiomyocytes In Vitro. Circulation, 1999, 100, 2373-2379.	1.6	367
12	Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-Â coactivator 1Â. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10086-10091.	3.3	347
13	miR-222 Is Necessary for Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling. Cell Metabolism, 2015, 21, 584-595.	7.2	316
14	Cardiac macrophages promote diastolic dysfunction. Journal of Experimental Medicine, 2018, 215, 423-440.	4.2	314
15	Restoration of Diastolic Function in Senescent Rat Hearts Through Adenoviral Gene Transfer of Sarcoplasmic Reticulum Ca ²⁺ -ATPase. Circulation, 2000, 101, 790-796.	1.6	253
16	Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes. Journal of the American College of Cardiology, 2004, 44, 2231-2238.	1.2	210
17	miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics, 2017, 7, 664-676.	4.6	174
18	Myostatin Regulates Cardiomyocyte Growth Through Modulation of Akt Signaling. Circulation Research, 2006, 99, 15-24.	2.0	155

ANTHONY ROSENZWEIG

#	Article	IF	CITATIONS
19	Circulating MicroRNA-30d Is Associated With Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis. Circulation, 2015, 131, 2202-2216.	1.6	137
20	Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB Journal, 2014, 28, 4408-4419.	0.2	136
21	Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nature Communications, 2018, 9, 1659.	5.8	134
22	Targeting Age-Related Pathways in Heart Failure. Circulation Research, 2020, 126, 533-551.	2.0	111
23	The Role of Exercise in Cardiac Aging. Circulation Research, 2016, 118, 279-295.	2.0	109
24	Effects of myostatin deletion in aging mice. Aging Cell, 2009, 8, 573-583.	3.0	96
25	Activin type II receptor signaling in cardiac aging and heart failure. Science Translational Medicine, 2019, 11, .	5.8	95
26	Can Exercise Teach Us How to Treat Heart Disease?. Circulation, 2012, 126, 2625-2635.	1.6	92
27	Pathological Role of Serum- and Glucocorticoid-Regulated Kinase 1 in Adverse Ventricular Remodeling. Circulation, 2012, 126, 2208-2219.	1.6	91
28	Why Don't We Have Proven Treatments for HFpEF?. Circulation Research, 2017, 120, 1243-1245.	2.0	88
29	Endothelial Progenitor Cells. New England Journal of Medicine, 2003, 348, 581-582.	13.9	80
30	Cardiomyocyte Cell-Cycle Activity during Preadolescence. Cell, 2015, 163, 781-782.	13.5	66
31	CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight, 2016, 1, .	2.3	63
32	Strategic advantages of insulin-like growth factor-I expression for cardioprotection. Journal of Gene Medicine, 2003, 5, 277-286.	1.4	61
33	Importance of FADD Signaling in Serum Deprivation- and Hypoxia-induced Cardiomyocyte Apoptosis. Journal of Biological Chemistry, 2002, 277, 31639-31645.	1.6	56
34	Plasma Circulating Extracellular RNAs in Left Ventricular Remodeling Post-Myocardial Infarction. EBioMedicine, 2018, 32, 172-181.	2.7	52
35	Molecular MRI Detects Low Levels of Cardiomyocyte Apoptosis in a Transgenic Model of Chronic Heart Failure. Circulation: Cardiovascular Imaging, 2009, 2, 468-475.	1.3	50
36	What do we know about the cardiac benefits of exercise?. Trends in Cardiovascular Medicine, 2015, 25, 529-536.	2.3	47

ANTHONY ROSENZWEIG

#	Article	IF	CITATIONS
37	Adhesion of Memory Lymphocytes to Vascular Cell Adhesion Molecule-1–Transduced Human Vascular Endothelial Cells Under Simulated Physiological Flow Conditions In Vitro. Circulation Research, 1996, 79, 1205-1215.	2.0	47
38	C and Câ€X Chemokines Trigger Firm Adhesion of Monocytes to Vascular Endothelium under Flow Conditions ^a . Annals of the New York Academy of Sciences, 2000, 902, 288-293.	1.8	46
39	Exercise training reverses cardiac aging phenotypes associated with heart failure with preserved ejection fraction in male mice. Aging Cell, 2020, 19, e13159.	3.0	46
40	lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation, 2022, 145, 1218-1233.	1.6	43
41	Using Exercise to Measure and Modify Cardiac Function. Cell Metabolism, 2015, 21, 227-236.	7.2	41
42	Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. Journal of Molecular and Cellular Cardiology, 2014, 72, 74-84.	0.9	40
43	DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Science Signaling, 2017, 10, .	1.6	39
44	PDK4 Inhibits Cardiac Pyruvate Oxidation in Late Pregnancy. Circulation Research, 2017, 121, 1370-1378.	2.0	33
45	Associations of Circulating Extracellular RNAs With Myocardial Remodeling and Heart Failure. JAMA Cardiology, 2018, 3, 871.	3.0	33
46	MicroRNAs Associated With Reverse Left Ventricular Remodeling in Humans Identify Pathways of Heart Failure Progression. Circulation: Heart Failure, 2018, 11, e004278.	1.6	32
47	Cardiac Regeneration. Science, 2012, 338, 1549-1550.	6.0	29
48	CITED4 Protects Against Adverse Remodeling in Response to Physiological and Pathological Stress. Circulation Research, 2020, 127, 631-646.	2.0	29
49	Targeting survival signaling in heart failure. Current Opinion in Pharmacology, 2005, 5, 165-170.	1.7	28
50	Mechanisms of exercise-induced cardiac growth. Drug Discovery Today, 2014, 19, 1003-1009.	3.2	28
51	Exercise and cardiovascular protection: Update and future. Journal of Sport and Health Science, 2021, 10, 607-608.	3.3	27
52	Ketone bodies for the failing heart: fuels that can fix the engine?. Trends in Endocrinology and Metabolism, 2021, 32, 814-826.	3.1	26
53	Role of Apoptosis in Heart Failure. Heart Failure Clinics, 2005, 1, 251-261.	1.0	22
54	S100A6 Regulates Endothelial Cell Cycle Progression by Attenuating Antiproliferative Signal Transducers and Activators of Transcription 1 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1854-1867.	1.1	22

ANTHONY ROSENZWEIG

#	Article	IF	CITATIONS
55	Inhibition of serum and glucocorticoid regulated kinase-1 as novel therapy for cardiac arrhythmia disorders. Scientific Reports, 2017, 7, 346.	1.6	22
56	An expanded repertoire of intensity-dependent exercise-responsive plasma proteins tied to loci of human disease risk. Scientific Reports, 2020, 10, 10831.	1.6	19
57	Susceptibility to Cardiac Arrhythmias and Sympathetic Nerve Growth in VEGF-B Overexpressing Myocardium. Molecular Therapy, 2020, 28, 1731-1740.	3.7	19
58	A Novel Transgenic Mouse Model of Cardiac Hypertrophy and Atrial Fibrillation. Journal of Atrial Fibrillation, 2012, 4, 415.	0.5	17
59	Plasma Proteomics of COVID-19–Associated Cardiovascular Complications. JACC Basic To Translational Science, 2022, 7, 425-441.	1.9	17
60	The Role of MicroRNAs in the Cardiac Response to Exercise. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a029850.	2.9	12
61	Serum Proteomics of Older Patients Undergoing Major Cardiac Surgery: Identification of Biomarkers Associated With Postoperative Delirium. Frontiers in Aging Neuroscience, 2021, 13, 699763.	1.7	10
62	Animal Models of Exercise From Rodents to Pythons. Circulation Research, 2022, 130, 1994-2014.	2.0	10
63	Cardiac-Specific Gene Expression Facilitated by an Enhanced Myosin Light Chain Promoter. Molecular Imaging, 2004, 3, 153535002004041.	0.7	8
64	The Growing Importance of Basic Models of Cardiovascular Disease. Circulation Research, 2022, 130, 1743-1746.	2.0	6
65	Ketone Bodies. Journal of the American College of Cardiology, 2021, 78, 1433-1436.	1.2	5
66	Patient and Provider Risk in Managing ST-Elevation Myocardial Infarction During the COVID-19 Pandemic. Circulation: Cardiovascular Interventions, 2020, 13, e010027.	1.4	4
67	Cardiac signal transduction. Journal of Nuclear Cardiology, 2000, 7, 63-71.	1.4	3
68	Three-dimensional myocardial scarring along myofibers after coronary ischemia-reperfusion revealed by computerized images of histological assays. Physiological Reports, 2014, 2, e12072.	0.7	3
69	Size matters: Finding growth pathways that protect the heart. Cell Research, 2017, 27, 1187-1188.	5.7	3
70	Exercise Training in Diabetes. Circulation Research, 2020, 127, 1401-1403.	2.0	3
71	Targeting ischemic cardiac dysfunction through gene transfer. Current Atherosclerosis Reports, 2003, 5, 191-195.	2.0	2
72	Understanding HeartÂFailure With Preserved Ejection Fraction in a Diabetic Way. JACC Basic To Translational Science, 2021, 6, 100-102.	1.9	2

#	Article	IF	CITATIONS
73	Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity. Communications Biology, 2022, 5, .	2.0	2
74	Optical nanosensors for intracellular sodium analysis. , 2008, , .		1
75	Response to Letter Regarding Article, "Circulating MicroRNA-30d Is Associated With Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis: A Translational Pilot Studyâ€: Circulation, 2016, 133, e389-e390.	1.6	1
76	Delivery Systems for Gene Therapy. Current Protocols in Human Genetics, 2000, 24, 13.0.1.	3.5	0
77	Interpretation of Transcript Profiling. Circulation Research, 2001, 89, .	2.0	0
78	Delivery Systems for Gene Therapy. Current Protocols in Human Genetics, 2008, 56, 13.0.1.	3.5	0
79	Editors' Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		0
80	Gene Therapy for Heart Failure. Fundamental and Clinical Cardiology, 2006, , 573-588.	0.0	0
81	Kruppel-Like Factor 10 (KLF10)-Deficient Mice Have Marked Defects In EPC Differentiation, Function, and Angiogenesis. Blood, 2010, 116, 4314-4314.	0.6	0
82	Human endothelial colony forming cells and mesenchymal progenitor cells form functional blood vessels and improve rat cardiac function after ischemia/reperfusion injury. FASEB Journal, 2013, 27, 1194.9.	0.2	0
83	Exercise and Healthy Cardiovascular Aging. , 2019, , 1-6.		0

84 Exercise and Healthy Cardiovascular Aging. , 2021, , 1743-1748.