Hakmo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6635852/publications.pdf Version: 2024-02-01

HARMOLEE

#	Article	IF	CITATIONS
1	Glucosamine potentiates the differentiation of adipose-derived stem cells into glucose-responsive insulin-producing cells. Annals of Translational Medicine, 2020, 8, 561-561.	1.7	4
2	Contribution of p38 MAPK Pathway to Norcantharidin-Induced Programmed Cell Death in Human Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2019, 20, 3487.	4.1	14
3	ABT-263 exhibits apoptosis-inducing potential in oral cancer cells by targeting C/EBP-homologous protein. Cellular Oncology (Dordrecht), 2019, 42, 357-368.	4.4	18
4	Direct differentiation of bone marrow mononucleated cells into insulin producing cells using pancreatic β-cell-derived components. Scientific Reports, 2019, 9, 5343.	3.3	4
5	Attenuation of PERK enhances glucose-stimulated insulin secretion in islets. Journal of Endocrinology, 2018, 236, 125-136.	2.6	23
6	Transplantation of human mobilized mononuclear cells improved diabetic neuropathy. Journal of Endocrinology, 2018, 239, 277-287.	2.6	1
7	<i>Senp2</i> expression was induced by chronic glucose stimulation in INS1 cells, and it was required for the associated induction of <i>Ccnd1</i> and <i>Mafa</i> . Islets, 2016, 8, 207-216.	1.8	7
8	Alleviation of skin inflammation after Linâ^' cell transplantation correlates with their differentiation into myeloid-derived suppressor cells. Scientific Reports, 2015, 5, 14663.	3.3	2
9	Mitochondrial Complexes I and II Are More Susceptible to Autophagy Deficiency in Mouse β-Cells. Endocrinology and Metabolism, 2015, 30, 65.	3.0	4
10	Autophagy deficiency in β cells blunts incretin-induced suppression of glucagon release from α cells. Islets, 2015, 7, e1129096.	1.8	3
11	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	4.1	317
12	SIRT3 Overexpression Attenuates Palmitate-Induced Pancreatic Î ² -Cell Dysfunction. PLoS ONE, 2015, 10, e0124744.	2.5	41
13	Bone marrow stem/progenitor cell mobilization in C57BL/6J and BALB/c mice. Laboratory Animal Research, 2014, 30, 14.	2.5	1
14	Novel Strategy for Successful Long-Term Hematopoietic Recovery after Transplanting a Limited Number of Hematopoietic Stem/Progenitor Cells. Biology of Blood and Marrow Transplantation, 2014, 20, 1282-1289.	2.0	2
15	The Potential of Endothelial Colony-Forming Cells to Improve Early Graft Loss after Intraportal Islet Transplantation. Cell Transplantation, 2014, 23, 273-283.	2.5	16
16	Kinetics of IFN-Î ³ and IL-17 Production by CD4 and CD8 T Cells during Acute Graft-versus-Host Disease. Immune Network, 2014, 14, 89.	3.6	10
17	4-deoxypyridoxine improves the viability of isolated pancreatic islets ex vivo. Islets, 2013, 5, 116-121.	1.8	4
18	Mithramycin A induces apoptosis by regulating the mTOR/Mcl-1/tBid pathway in androgen-independent prostate cancer cells. Journal of Clinical Biochemistry and Nutrition, 2013, 53, 89-93.	1.4	12

Ηακμο Lee

#	Article	IF	CITATIONS
19	Granulocyte-Derived Cationic Peptide Enhances Homing and Engraftment of Bone Marrow Stem Cells after Transplantation. Laboratory Animal Research, 2011, 27, 133.	2.5	1
20	Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: Further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Experimental Hematology, 2010, 38, 321-332.	0.4	64
21	Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Archivum Immunologiae Et Therapiae Experimentalis, 2009, 57, 269-278.	2.3	30