
Nicolas Izard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6635564/publications.pdf Version: 2024-02-01

0

#	Article	IF	CITATIONS
1	Tuning of photoluminescence intensity and Fermi level position of individual single-walled carbon nanotubes by molecule confinement. Carbon, 2022, 186, 423-430.	10.3	3
2	Comment on the paper "Improving Poor Man's Kramers-Kronig analysis and Kramers-Kronig constrained variational analysis― Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 259, 119849.	3.9	4
3	Fermi level shift in carbon nanotubes by dye confinement. Carbon, 2019, 149, 772-780.	10.3	17
4	Hydroxide Ions Stabilize Open Carbon Nanotubes in Degassed Water. ACS Nano, 2018, 12, 8606-8615.	14.6	7
5	Morphology and anisotropy of thin conductive inkjet printed lines of single-walled carbon nanotubes. Materials Research Express, 2017, 4, 035037.	1.6	7
6	Coupling of semiconductor carbon nanotubes emission with silicon photonic micro ring resonators. , 2016, , .		0
7	Integration of Carbon Nanotubes in Silicon Strip and Slot Waveguide Micro-Ring Resonators. IEEE Nanotechnology Magazine, 2016, 15, 583-589.	2.0	10
8	Hybrid integration of carbon nanotubes into silicon slot photonic structures. , 2016, , .		0
9	Polymerâ€Decorated Carbon Nanotubes as Transducers for Labelâ€Free Photonic Biosensors. Chemistry - A European Journal, 2015, 21, 18649-18653.	3.3	5
10	Near-Field Fano-Imaging of TE and TM Modes in Silicon Microrings. ACS Photonics, 2015, 2, 1712-1718.	6.6	6
11	Enhanced light emission from carbon nanotubes integrated in silicon micro-resonator. Nanotechnology, 2015, 26, 345201.	2.6	26
12	Carbon nanotube photonics: using microring resonators for tailoring semiconducting carbon nanotubes photoluminescence. Journal of Nanophotonics, 2015, 10, 012513.	1.0	1
13	Controlling carbon nanotube photoluminescence using silicon microring resonators. Nanotechnology, 2014, 25, 215201.	2.6	28
14	Pockels effect study in strained silicon Mach-Zenhder interferometer. , 2014, , .		2
15	Monte Carlo simulations of carbon nanotube networks for optoelectronic applications. , 2014, , .		0
16	Wavelength dependence of Pockels effect in strained silicon waveguides. Optics Express, 2014, 22, 22095.	3.4	46
17	(Invited) Carbon Nanotube Based Photonics. ECS Transactions, 2014, 61, 89-95.	0.5	0

18 Monte Carlo simulations of carbon nanotube networks for optoelectronic applications. , 2014, , .

2

NICOLAS IZARD

#	Article	IF	CITATIONS
19	Photocurrent Quantum Yield of Semiconducting Carbon Nanotubes: Dependence on Excitation Energy and Exciton Binding Energy. Journal of Physical Chemistry C, 2014, 118, 18059-18063.	3.1	8
20	Light emission at telecom wavelengths from single-walled carbon nanotubes. , 2013, , .		1
21	Group IV Photonics: Towards Carbon Nanotube Photonics. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 3-8.	0.5	1
22	Carbon nanotube for photonics: light emission in silicon and optical gain. , 2012, , .		0
23	Room temperature direct-gap electroluminescence in Ge/SiGe quantum well waveguides. Proceedings of SPIE, 2012, , .	0.8	0
24	Measurement of room temperature electroluminescence from Ge quantum well waveguides. , 2012, , .		0
25	Carbon nanotube photonics on silicon. , 2012, , .		0
26	Towards carbon nanotube-based integrated photonics devices. , 2012, , .		0
27	Light Emission in Silicon from Carbon Nanotubes. ACS Nano, 2012, 6, 3813-3819.	14.6	46
28	Semiconducting carbon nanotubes exciton probed by electroabsorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 932-935.	2.7	1
29	Dispersion Engineering of Wide Slot Photonic Crystal Waveguides by Bragg-Like Corrugation of the Slot. IEEE Photonics Technology Letters, 2011, 23, 1298-1300.	2.5	43
30	Wavelength Demultiplexer Based on a Two-Dimensional Graded Photonic Crystal. IEEE Photonics Technology Letters, 2011, 23, 1094-1096.	2.5	6
31	Carbon nanotubes based photonics: Towards the laser. , 2011, , .		0
32	Electroabsorption study of index-defined semiconducting carbon nanotubes. EPJ Applied Physics, 2011, 55, 20401.	0.7	6
33	Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide. Applied Physics Letters, 2011, 99, .	3.3	37
34	Photoluminescence enhancement of semiconducting-carbon-nanotubes-based thin films. , 2010, , .		2
35	Optical gain in carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	53
36	Optical microcavity with semiconducting single-wall carbon nanotubes. Optics Express, 2010, 18, 5740.	3.4	41

NICOLAS IZARD

#	Article	IF	CITATIONS
37	Enhancement of semiconducting single-wall carbon-nanotube photoluminescence. Optics Letters, 2009, 34, 3845.	3.3	30
38	Nanocomposite Thin Films for Surface Protection in Electrical Contact Applications. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 358-364.	1.3	4
39	Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Applied Physics Letters, 2008, 92, 243112.	3.3	139
40	Nanocomposite thin films for surface protection in electrical contact applications. , 2007, , .		6
41	Intrinsic current gain cutoff frequency of 30GHz with carbon nanotube transistors. Applied Physics Letters, 2007, 90, 233108.	3.3	102
42	Carbon nanotubes/fluorinated polymers nanocomposite thin films for electrical contacts lubrication. Surface Science, 2007, 601, 3687-3692.	1.9	18
43	Separation of Semiconducting from Metallic Carbon Nanotubes by Selective Functionalization with Azomethine Ylides. Journal of the American Chemical Society, 2006, 128, 6552-6553.	13.7	126
44	Raman Scattering in Crystalline Oligothiophenes:Â A Comparison between Density Functional Theory and Bond Polarizability Model. Journal of Physical Chemistry B, 2006, 110, 24869-24875.	2.6	34
45	Optical limiting with soluble two-photon absorbing quadrupoles: Structure–property relationships. Chemical Physics Letters, 2006, 417, 297-302.	2.6	96
46	Exfoliation of single-wall carbon nanotubes in aqueous surfactant suspensions: A Raman study. Physical Review B, 2005, 71, .	3.2	49
47	Influence of structure on the optical limiting properties of nanotubes. Optics Letters, 2005, 30, 1509.	3.3	46
48	Combination of carbon nanotubes and two-photon absorbers for broadband optical limiting. Chemical Physics Letters, 2004, 391, 124-128.	2.6	42
49	Broadband optical limiting optimization by combination of carbon nanotubes and two-photon absorbing chromophores in liquids. , 2003, , .		6