Martin A Green

List of Publications by Citations

Source: https://exaly.com/author-pdf/6635359/martin-a-green-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 606
 54,427
 110
 220

 papers
 citations
 h-index
 g-index

 669
 61,937
 7
 8.44

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
606	The emergence of perovskite solar cells. <i>Nature Photonics</i> , 2014 , 8, 506-514	33.9	4538
605	Surface plasmon enhanced silicon solar cells. <i>Journal of Applied Physics</i> , 2007 , 101, 093105	2.5	1396
604	Solar cell efficiency tables (Version 45). <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 1-9	6.8	1325
603	Solar cell efficiency tables (version 39). <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 12-20	6.8	938
602	Optical properties of intrinsic silicon at 300 K. <i>Progress in Photovoltaics: Research and Applications</i> , 1995 , 3, 189-192	6.8	858
601	Improving solar cell efficiencies by down-conversion of high-energy photons. <i>Journal of Applied Physics</i> , 2002 , 92, 1668-1674	2.5	793
600	Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1305-1310	6.4	756
599	19.8% efficient BoneycombItextured multicrystalline and 24.4% monocrystalline silicon solar cells. <i>Applied Physics Letters</i> , 1998 , 73, 1991-1993	3.4	752
598	Light trapping properties of pyramidally textured surfaces. <i>Journal of Applied Physics</i> , 1987 , 62, 243-24	19 2.5	691
597	Solar cell efficiency tables (version 50). <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 668-676	6.8	663
596	Improving solar cell efficiencies by up-conversion of sub-band-gap light. <i>Journal of Applied Physics</i> , 2002 , 92, 4117-4122	2.5	642
595	Solar cell efficiency tables (version 51). <i>Progress in Photovoltaics: Research and Applications</i> , 2018 , 26, 3-12	6.8	622
594	Solar cell efficiency tables (version 41). <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 1-11	6.8	618
593	Solar cell efficiency tables (version 37). <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 84-92	6.8	614
592	Solar cell efficiency tables (Version 53). <i>Progress in Photovoltaics: Research and Applications</i> , 2019 , 27, 3-12	6.8	540
591	Solar cell efficiency tables (Version 55). <i>Progress in Photovoltaics: Research and Applications</i> , 2020 , 28, 3-15	6.8	533
590	Solar cell efficiency tables (version 54). <i>Progress in Photovoltaics: Research and Applications</i> , 2019 , 27, 565-575	6.8	516

(2015-2017)

589	Solar cell efficiency tables (version 49). <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 3-13	6.8	514	
588	Solar cell efficiency tables (version 48). <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 905-913	6.8	512	
587	Solar cell efficiency tables (version 47). <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 3-11	6.8	498	
586	22.8% efficient silicon solar cell. <i>Applied Physics Letters</i> , 1989 , 55, 1363-1365	3.4	497	
585	Solar cell efficiency tables (version 52). <i>Progress in Photovoltaics: Research and Applications</i> , 2018 , 26, 427-436	6.8	491	
584	24屆% Efficiency silicon PERT cells on MCZ substrates and 24屆% efficiency PERL cells on FZ substrates. <i>Progress in Photovoltaics: Research and Applications</i> , 1999 , 7, 471-474	6.8	483	
583	Silicon nanostructures for third generation photovoltaic solar cells. <i>Thin Solid Films</i> , 2006 , 511-512, 654-	-662	477	
582	The path to 25% silicon solar cell efficiency: History of silicon cell evolution. <i>Progress in Photovoltaics: Research and Applications</i> , 2009 , 17, 183-189	6.8	460	
581	Third generation photovoltaics: Ultra-high conversion efficiency at low cost. <i>Progress in Photovoltaics: Research and Applications</i> , 2001 , 9, 123-135	6.8	457	
580	Intrinsic concentration, effective densities of states, and effective mass in silicon. <i>Journal of Applied Physics</i> , 1990 , 67, 2944-2954	2.5	451	
579	Solar cell efficiency tables (version 44). <i>Progress in Photovoltaics: Research and Applications</i> , 2014 , 22, 701-710	6.8	436	
578	Solar cell efficiency tables (version 46). <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 805-812	6.8	429	
577	Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. <i>Nature Energy</i> , 2018 , 3, 764-772	62.3	429	
576	Luminescent layers for enhanced silicon solar cell performance: Up-conversion. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 829-842	6.4	426	
575	Efficient silicon light-emitting diodes. <i>Nature</i> , 2001 , 412, 805-8	50.4	424	
574	Solar cell efficiency tables (version 43). <i>Progress in Photovoltaics: Research and Applications</i> , 2014 , 22, 1-9	6.8	420	
573	Energy conversion approaches and materials for high-efficiency photovoltaics. <i>Nature Materials</i> , 2016 , 16, 23-34	27	378	
57²	Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 875-80	6.4	367	

571	Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells, 2010, 94, 1481-1486	6.4	367
570	Solar cell efficiency tables (version 57). <i>Progress in Photovoltaics: Research and Applications</i> , 2021 , 29, 3-15	6.8	356
569	Solar cell efficiency tables (version 56). <i>Progress in Photovoltaics: Research and Applications</i> , 2020 , 28, 629-638	6.8	337
568	Solar cell efficiency tables (version 36). <i>Progress in Photovoltaics: Research and Applications</i> , 2010 , 18, 346-352	6.8	335
567	Beneficial Effects of PbI2 Incorporated in Organo-Lead Halide Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1502104	21.8	335
566	Silicon quantum dot nanostructures for tandem photovoltaic cells. <i>Thin Solid Films</i> , 2008 , 516, 6748-675	6 .2	332
565	Solar cell fill factors: General graph and empirical expressions. <i>Solid-State Electronics</i> , 1981 , 24, 788-789	1.7	325
564	. IEEE Transactions on Electron Devices, 1991 , 38, 1925-1934	2.9	324
563	Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation. <i>Advanced Energy Materials</i> , 2016 , 6, 1502202	21.8	317
562	Thin-film solar cells: review of materials, technologies and commercial status. <i>Journal of Materials Science: Materials in Electronics</i> , 2007 , 18, 15-19	2.1	302
561	Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 235-241	6.8	286
560	Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600330	21.8	281
559	Solar cell efficiency tables (version 40). <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 606-614	6.8	279
558	Solar cell efficiency tables (version 33). <i>Progress in Photovoltaics: Research and Applications</i> , 2009 , 17, 85-94	6.8	273
557	Third generation photovoltaics: solar cells for 2020 and beyond. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 14, 65-70	3	269
556	High Efficiency Silicon Solar Cells		268
555	The current status and future prospects of kesterite solar cells: a brief review. <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 879-898	6.8	267
554	Solar Energy Conversion Toward 1 Terawatt. <i>MRS Bulletin</i> , 2008 , 33, 355-364	3.2	266

(2006-2013)

553	Solar cell efficiency tables (version 42). <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 827-837	6.8	263	
55 ²	Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1\(\mathbb{U}\)CdxS Buffer Layer. Advanced Energy Materials, 2016, 6, 1600046	21.8	260	
551	Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters, 2017, 2, 822-830	20.1	259	
550	Strontium-Doped Low-Temperature-Processed CsPbI2Br Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2017 , 2, 2319-2325	20.1	258	
549	Solar cell efficiency tables (Version 38). <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 565-572	6.8	258	
548	Radiative efficiency of state-of-the-art photovoltaic cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 472-476	6.8	255	
547	Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. <i>Nature Communications</i> , 2017 , 8, 14120	17.4	245	
546	Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 3327-3338	6.4	245	
545	Silicon quantum dot/crystalline silicon solar cells. <i>Nanotechnology</i> , 2008 , 19, 245201	3.4	243	
544	The Passivated Emitter and Rear Cell (PERC): From conception to mass production. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 143, 190-197	6.4	237	
543	Terawatt-scale photovoltaics: Trajectories and challenges. <i>Science</i> , 2017 , 356, 141-143	33.3	227	
542	Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. <i>Applied Physics Letters</i> , 1995 , 66, 3636-3638	3.4	227	
541	Mixed 3DID Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability. <i>Advanced Energy Materials</i> , 2018 , 8, 1703392	21.8	226	
540	Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic solgel route. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 500-509	13	220	
539	Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. <i>Journal of Applied Physics</i> , 2006 , 99, 114902	2.5	215	
538	24% efficient silicon solar cells. <i>Applied Physics Letters</i> , 1990 , 57, 602-604	3.4	214	
537	Accuracy of analytical expressions for solar cell fill factors. Solar Cells, 1982, 7, 337-340		214	
536	Enhanced emission from Si-based light-emitting diodes using surface plasmons. <i>Applied Physics Letters</i> , 2006 , 88, 161102	3.4	210	

535	Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. Journal of Applied Physics, 2003 , 94, 4930	2.5	210
534	Solar cell efficiency tables (version 35). <i>Progress in Photovoltaics: Research and Applications</i> , 2010 , 18, 144-150	6.8	209
533	High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. <i>ACS Energy Letters</i> , 2017 , 2, 438-444	20.1	200
532	General temperature dependence of solar cell performance and implications for device modelling. <i>Progress in Photovoltaics: Research and Applications</i> , 2003 , 11, 333-340	6.8	2 00
531	Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4774-85	6.4	199
530	CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition. <i>ACS Energy Letters</i> , 2016 , 1, 573-577	20.1	196
529	Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. Journal of Physical Chemistry C, 2015 , 119, 3545-3549	3.8	195
528	Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1\(\mathbb{B}\)SnS4 Solar Cell: Effects of Cadmium Alloying. <i>ACS Energy Letters</i> , 2017 , 2, 930-936	20.1	194
527	Crystalline silicon on glass (CSG) thin-film solar cell modules. <i>Solar Energy</i> , 2004 , 77, 857-863	6.8	192
526	Recent developments in photovoltaics. <i>Solar Energy</i> , 2004 , 76, 3-8	6.8	190
525	Crystalline and thin-film silicon solar cells: state of the art and future potential. <i>Solar Energy</i> , 2003 , 74, 181-192	6.8	190
524	Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1705363	15.6	172
523	Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. <i>Science</i> , 2020 , 368,	33.3	167
522	Solar cell efficiency tables (Version 34). <i>Progress in Photovoltaics: Research and Applications</i> , 2009 , 17, 320-326	6.8	166
521	Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. <i>Nature Energy</i> , 2020 , 5, 587-595	62.3	162
520	24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research. <i>Solar Energy Materials and Solar Cells</i> , 1996 , 41-42, 87-99	6.4	159
519	Solar cell efficiency tables (Version 58). <i>Progress in Photovoltaics: Research and Applications</i> , 2021 , 29, 657	6.8	151
518	Improved value for the silicon intrinsic carrier concentration from 275 to 375 K. <i>Journal of Applied Physics</i> , 1991 , 70, 846-854	2.5	150

(2008-2010)

517	Hot carrier solar cells: Principles, materials and design. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2010 , 42, 2862-2866	3	147
516	Solar cell efficiency tables (Version 31). <i>Progress in Photovoltaics: Research and Applications</i> , 2008 , 16, 61-67	6.8	146
515	Very efficient light emission from bulk crystalline silicon. <i>Applied Physics Letters</i> , 2003 , 82, 2996-2998	3.4	138
5 1 4	Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Low-Temperature-Processed Planar-Structure Hybrid Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1800138	21.8	137
513	Defect trapping states and charge carrier recombination in organic[horganic halide perovskites. Journal of Materials Chemistry C, 2016 , 4, 793-800	7.1	136
512	Silicon photovoltaic modules: a brief history of the first 50 years. <i>Progress in Photovoltaics: Research and Applications</i> , 2005 , 13, 447-455	6.8	133
511	655 mV open-circuit voltage, 17.6% efficient silicon MIS solar cells. <i>Applied Physics Letters</i> , 1979 , 34, 79	0 <i>-3</i> .2p3	126
510	Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. <i>Energy and Environmental Science</i> , 2018 , 11, 2432-2443	35.4	122
509	Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. <i>Applied Physics Letters</i> , 2014 , 104, 051105	3.4	121
508	Slowing of carrier cooling in hot carrier solar cells. <i>Thin Solid Films</i> , 2008 , 516, 6948-6953	2.2	121
507	Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 25073-25081	9.5	118
506	. IEEE Transactions on Electron Devices, 1990 , 37, 331-336	2.9	116
505	Progress in Laser-Crystallized Thin-Film Polycrystalline Silicon Solar Cells: Intermediate Layers, Light Trapping, and Metallization. <i>IEEE Journal of Photovoltaics</i> , 2014 , 4, 33-39	3.7	115
504	Selective energy contacts for hot carrier solar cells. <i>Thin Solid Films</i> , 2008 , 516, 6968-6973	2.2	114
503	20% efficiency silicon solar cells. <i>Applied Physics Letters</i> , 1986 , 48, 215-217	3.4	114
502	Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons. <i>Applied Physics Letters</i> , 2010 , 96, 261109	3.4	113
501	Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 273-279	6.4	112
500	Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 474-481	6.4	112

499	Detailed balance limit for the series constrained two terminal tandem solar cell. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 14, 96-100	3	112
498	Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications. <i>Applied Physics Letters</i> , 2009 , 95, 153506	3.4	110
497	n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 684-690	6.4	109
496	Solar energy collection by antennas. <i>Solar Energy</i> , 2002 , 73, 395-401	6.8	108
495	Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2017 , 2, 1978-1984	20.1	104
494	The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. <i>Journal of Applied Physics</i> , 2011 , 109, 073105	2.5	103
493	Solar cell efficiency tables (version 30). <i>Progress in Photovoltaics: Research and Applications</i> , 2007 , 15, 425-430	6.8	102
492	Photovoltaics: technology overview. <i>Energy Policy</i> , 2000 , 28, 989-998	7.2	101
491	Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. <i>Nano Letters</i> , 2015 , 15, 4644-9	11.5	97
490	Photovoltaic principles. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 14, 11-17	3	97
489	Estimates of te and in prices from direct mining of known ores. <i>Progress in Photovoltaics: Research and Applications</i> , 2009 , 17, 347-359	6.8	95
488	Solar cell efficiency tables (version 28). <i>Progress in Photovoltaics: Research and Applications</i> , 2006 , 14, 455-461	6.8	93
487	Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600706	21.8	93
486	High performance light trapping textures for monocrystalline silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 65, 369-375	6.4	91
485	Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites. <i>Applied Physics Letters</i> , 2015 , 107, 231902	3.4	90
484	Surface recombination velocity measurements at the siliconfilicon dioxide interface by microwave-detected photoconductance decay. <i>Journal of Applied Physics</i> , 1994 , 76, 363-370	2.5	89
483	Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite. <i>Solar Rrl</i> , 2017 , 1, 1600001	7.1	88
482	Mobile Ion Induced Slow Carrier Dynamics in Organic-Inorganic Perovskite CHNH B bBr[] <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 5351-7	9.5	87

481	Optical analysis of perovskite/silicon tandem solar cells. Journal of Materials Chemistry C, 2016, 4, 5679-	·5 /6 89	86
480	Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 144, 700-706	6.4	85
479	Consolidation of thin-film photovoltaic technology: the coming decade of opportunity. <i>Progress in Photovoltaics: Research and Applications</i> , 2006 , 14, 383-392	6.8	85
478	Silicon Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells. <i>Advances in OptoElectronics</i> , 2007 , 2007, 1-11	0.5	84
477	The Effect of Stoichiometry on the Stability of Inorganic Cesium Lead Mixed-Halide Perovskites Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19642-19649	3.8	83
476	Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. <i>NPG Asia Materials</i> , 2017 , 9, e401-e401	10.3	83
475	Progress on hot carrier cells. Solar Energy Materials and Solar Cells, 2009, 93, 713-719	6.4	83
474	Room temperature optical properties of organicIhorganic lead halide perovskites. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 137, 253-257	6.4	82
473	Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 174, 314-324	6.4	82
472	Balancing electrical and optical losses for efficient 4-terminal Siperovskite solar cells with solution processed percolation electrodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3583-3592	13	80
471	Morphology and Carrier Extraction Study of Organic-Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3849-53	6.4	80
470	Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films. <i>Nanotechnology</i> , 2009 , 20, 485703	3.4	80
469	Solar cell efficiency tables (version 29). <i>Progress in Photovoltaics: Research and Applications</i> , 2007 , 15, 35-40	6.8	80
468	Solar cell efficiency tables (version 27). <i>Progress in Photovoltaics: Research and Applications</i> , 2006 , 14, 45-51	6.8	80
467	Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films. <i>Journal of Applied Physics</i> , 2008 , 104, 104310	2.5	77
466	Very high efficiency silicon solar cells-science and technology. <i>IEEE Transactions on Electron Devices</i> , 1999 , 46, 1940-1947	2.9	77
465	Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications. <i>Applied Surface Science</i> , 2009 , 255, 7028-7035	6.7	74
464	Impurity photovoltaic effect: Fundamental energy conversion efficiency limits. <i>Journal of Applied Physics</i> , 2002 , 92, 1329-1336	2.5	74

463	Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. <i>Semiconductor Science and Technology</i> , 1993 , 8, 1-12	1.8	74
462	Nucleation and Growth Control of HC(NH2)2PbI3 for Planar Perovskite Solar Cell. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 11262-11267	3.8	74
461	Structural characterization of annealed Si1\(\text{SiC} \text{ multilayers targeting formation of Si nanocrystals in a SiC matrix. } \) Journal of Applied Physics, 2008, 103, 083544	2.5	73
460	Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 1524-1530	6.4	71
459	Solar cell efficiency tables (Version 32). <i>Progress in Photovoltaics: Research and Applications</i> , 2008 , 16, 435-440	6.8	70
458	Accurate determination of minority carrier- and lattice scattering-mobility in silicon from photoconductance decay. <i>Journal of Applied Physics</i> , 1992 , 72, 4161-4171	2.5	70
457	Photovoltaics: Perovskite cells charge forward. <i>Nature Materials</i> , 2015 , 14, 559-61	27	69
456	Solution-Processed, Silver-Doped NiOx as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 561-570	6.1	69
455	Roadmap on optical energy conversion. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 073004	1.7	69
454	High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 65, 429-435	6.4	69
453	21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell on 16 cm2. <i>ACS Energy Letters</i> , 2018 , 3, 2299-2300	20.1	69
452	Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 1996 , 4, 399-414	6.8	68
451	Fabrication of Efficient and Stable CsPbI3 Perovskite Solar Cells through Cation Exchange Process. Advanced Energy Materials, 2019 , 9, 1901685	21.8	67
450	Solar cell efficiency tables (version 59). <i>Progress in Photovoltaics: Research and Applications</i> , 2022 , 30, 3-12	6.8	67
449	Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix. <i>Nanotechnology</i> , 2008 , 19, 424019	3.4	66
448	Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3931-4	6.4	65
447	Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. <i>Thin Solid Films</i> , 2008 , 516, 3824-3830	2.2	65
446	Solar cell efficiency tables (version 22). <i>Progress in Photovoltaics: Research and Applications</i> , 2003 , 11, 347-352	6.8	65

445	Potential for low dimensional structures in photovoltaics. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2000 , 74, 118-124	3.1	65
444	Limiting loss mechanisms in 23% efficient silicon solar cells. <i>Journal of Applied Physics</i> , 1995 , 77, 3491-3.	5 ᡚ.4	65
443	Novel parallel multijunction solar cell. <i>Applied Physics Letters</i> , 1994 , 65, 2907-2909	3.4	65
442	Solar cell efficiency tables. <i>Progress in Photovoltaics: Research and Applications</i> , 1993 , 1, 25-29	6.8	65
441	40% efficient sunlight to electricity conversion. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 685-691	6.8	64
440	Supercharging Silicon Solar Cell Performance by Means of Multijunction Concept. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 968-976	3.7	64
439	19.1% efficient silicon solar cell. <i>Applied Physics Letters</i> , 1984 , 44, 1163-1164	3.4	64
438	MIS solar cell © eneral theory and new experimental results for silicon. <i>Applied Physics Letters</i> , 1976 , 29, 610-612	3.4	64
437	Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers. <i>Energy and Environmental Science</i> , 2019 , 12, 2751-2764	35.4	63
436	Limiting efficiency for current-constrained two-terminal tandem cell stacks. <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 299-307	6.8	63
435	Progress and outlook for high-efficiency crystalline silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 65, 9-16	6.4	63
434	Thin-film polycrystalline silicon solar cells formed by diode laser crystallisation. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 1377-1383	6.8	62
433	Polycrystalline silicon on glass for thin-film solar cells. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 96, 153-159	2.6	62
432	Forty three per cent composite split-spectrum concentrator solar cell efficiency. <i>Progress in Photovoltaics: Research and Applications</i> , 2010 , 18, 42-47	6.8	62
431	An effective method of predicting perovskite solar cell lifetime (Case study on planar CH3NH3PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 162, 41-46	6.4	61
430	How Did Solar Cells Get So Cheap?. <i>Joule</i> , 2019 , 3, 631-633	27.8	61
429	Integrated Photorechargeable Energy Storage System: Next-Generation Power Source Driving the Future. <i>Advanced Energy Materials</i> , 2020 , 10, 1903930	21.8	61
428	Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K. <i>Journal of Applied Physics</i> , 1993 , 73, 1214-1225	2.5	61

427	Electric field induced reversible and irreversible photoluminescence responses in methylammonium lead iodide perovskite. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9060-9068	7.1	61
426	Role of the interface for the electronic structure of Si quantum dots. <i>Physical Review B</i> , 2008 , 78,	3.3	60
425	Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber. <i>Journal of Applied Physics</i> , 2010 , 108, 094507	2.5	59
424	Modelling of hot carrier solar cell absorbers. Solar Energy Materials and Solar Cells, 2010, 94, 1516-1521	6.4	59
423	24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 66, 27-36	6.4	59
422	The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells?. <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 345-353	6.8	58
421	High-efficiency silicon solar cells: Full factor limitations and non-ideal diode behaviour due to voltage-dependent rear surface recombination velocity. <i>Progress in Photovoltaics: Research and Applications</i> , 1993 , 1, 133-143	6.8	58
420	Evidence for multiple barrier heights in P-type PtSi Schottky-barrier diodes from I-V-T and photoresponse measurements. <i>Solid-State Electronics</i> , 1990 , 33, 299-308	1.7	58
419	Defect Control for 12.5% Efficiency Cu ZnSnSe Kesterite Thin-Film Solar Cells by Engineering of Local Chemical Environment. <i>Advanced Materials</i> , 2020 , 32, e2005268	24	58
418	Pushing to the Limit: Radiative Efficiencies of Recent Mainstream and Emerging Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 1639-1644	20.1	57
417	Unveiling the Relationship between the Perovskite Precursor Solution and the Resulting Device Performance. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6251-6260	16.4	57
416	Photoluminescence and electroluminescence imaging of perovskite solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 1697-1705	6.8	57
415	Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 813-824	6.8	57
414	Silicon nanocrystals in an oxide matrix for thin film solar cells with 492mV open circuit voltage. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 100, 65-68	6.4	56
413	Thermophotonics. Semiconductor Science and Technology, 2003, 18, S270-S278	1.8	56
412	Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2001 , 9, 137-144	6.8	56
411	. IEEE Transactions on Electron Devices, 1995 , 42, 144-149	2.9	56
410	Time-asymmetric photovoltaics. <i>Nano Letters</i> , 2012 , 12, 5985-8	11.5	55

(2018-2009)

409	Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix. <i>Thin Solid Films</i> , 2009 , 517, 5646-5652	2.2	55
408	Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 2238-2243	6.4	55
407	Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 101, 217-226	6.4	54
406	Ag requirements for silicon wafer-based solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 911-916	6.8	54
405	16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell. <i>Applied Physics Letters</i> , 1989 , 55, 2363-2365	3.4	54
404	Characterization of high-efficiency silicon solar cells. <i>Journal of Applied Physics</i> , 1985 , 58, 4402-4408	2.5	54
403	Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry. <i>Applied Physics Letters</i> , 2016 , 108, 061905	3.4	54
402	Spin-coating free fabrication for highly efficient perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 168, 165-171	6.4	53
401	Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long-Term Stable Perovskite Solar Cell. <i>Advanced Science</i> , 2020 , 7, 1903368	13.6	53
400	Thermal Behavior of Photovoltaic Devices 2017 ,		52
399	Photovoltaic technology and visions for the future. <i>Progress in Energy</i> , 2019 , 1, 013001	7.7	52
398	Realistic Silver Optical Constants for Plasmonics. <i>Scientific Reports</i> , 2016 , 6, 30605	4.9	52
397	Light- and bias-induced structural variations in metal halide perovskites. <i>Nature Communications</i> , 2019 , 10, 444	17.4	51
396	Interplay between the hot phonon effect and intervalley scattering on the cooling rate of hot carriers in GaAs and InP. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 82-92	6.8	51
395	Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. <i>ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. <i>ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Halide Perovskite & Distribution on Organo-Lead Halide Perovskite & Distribution &</i></i></i>	9.5	50
395 394		9.5 2.5	50
	Applied Materials & Description of Applied Physics, 2017, 9, 6072-6078 A conceptual model of light coupling by pillar diffraction gratings. Journal of Applied Physics, 2007,		

391	Solar Cell Efficiency Tables (Version 20). <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 355-360	6.8	47
390	High efficiency polycrystalline silicon solar cells using phosphorus pretreatment. <i>Applied Physics Letters</i> , 1986 , 48, 873-875	3.4	47
389	. IEEE Transactions on Electron Devices, 1990 , 37, 382-384	2.9	46
388	Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 473-477	6.8	45
387	Effects of pinholes, oxide traps, and surface states on MIS solar cells. <i>Applied Physics Letters</i> , 1978 , 33, 178-180	3.4	45
386	Utilization of Direct and Diffuse Sunlight in a Dye-Sensitized Solar Cell lilicon Photovoltaic Hybrid Concentrator System. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 581-585	6.4	44
385	Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions. <i>Applied Physics Letters</i> , 2007 , 91, 123510	3.4	44
384	Solar cell efficiency tables (version 17). <i>Progress in Photovoltaics: Research and Applications</i> , 2001 , 9, 49	- 56 .8	44
383	Fabrication and characterization of Si nanocrystals in SiC matrix produced by magnetron cosputtering. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 1327		43
382	Clear quantum-confined luminescence from crystalline silicon/SiO2 single quantum wells. <i>Applied Physics Letters</i> , 2004 , 84, 2286-2288	3.4	43
381	Limiting efficiency for a multi-band solar cell containing three and four bands. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 14, 121-125	3	43
380	Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2542-2547	3.8	42
379	General solar cell curve factors including the effects of ideality factor, temperature and series resistance. <i>Solid-State Electronics</i> , 1977 , 20, 265-266	1.7	42
378	Lifetime limiting recombination pathway in thin-film polycrystalline silicon on glass solar cells. <i>Journal of Applied Physics</i> , 2010 , 107, 123705	2.5	40
377	Non-ideal energy selective contacts and their effect on the performance of a hot carrier solar cell with an indium nitride absorber. <i>Applied Physics Letters</i> , 2012 , 100, 053502	3.4	40
376	Solar cell efficiency tables (version 15). <i>Progress in Photovoltaics: Research and Applications</i> , 2000 , 8, 18	7 - d. 9 5	40
375	Extended infrared response of silicon solar cells and the impurity photovoltaic effect. <i>Solar Energy Materials and Solar Cells</i> , 1996 , 41-42, 195-204	6.4	40
374	Silicon solar cells: state of the art. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20110413	3	39

373	Generalized relationship between dark carrier distribution and photocarrier collection in solar cells. Journal of Applied Physics, 1997, 81, 268-271	2.5	39	
372	Solar cell efficiency tables (version 11). <i>Progress in Photovoltaics: Research and Applications</i> , 1998 , 6, 35-	46. 8	39	
371	Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation[[Appl. Phys. Lett. 83, 380 (2003)]. <i>Applied Physics Letters</i> , 2004 , 84, 1997-1998	3.4	39	
370	Enhanced Heterojunction Interface Quality To Achieve 9.3% Efficient Cd-Free Cu2ZnSnS4 Solar Cells Using Atomic Layer Deposition ZnSnO Buffer Layer. <i>Chemistry of Materials</i> , 2018 , 30, 7860-7871	9.6	39	
369	Spatially resolved photoluminescence imaging of essential silicon solar cell parameters and comparison with CELLO measurements. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 109, 77-81	6.4	38	
368	Large-Area Diode Laser Defect Annealing of Polycrystalline Silicon Solar Cells. <i>IEEE Transactions on Electron Devices</i> , 2012 , 59, 2838-2841	2.9	38	
367	Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix. <i>Nanoscale Research Letters</i> , 2011 , 6, 129	5	38	
366	Size controlled synthesis of Ge nanocrystals in SiO2 at temperatures below 400 LC using magnetron sputtering. <i>Applied Physics Letters</i> , 2010 , 96, 261901	3.4	38	
365	Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers. <i>Thin Solid Films</i> , 2011 , 519, 5408-5412	2.2	38	
364	Numerical quantification and minimization of perimeter losses in high-efficiency silicon solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 1996 , 4, 355-367	6.8	38	
363	Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy. <i>Nano Energy</i> , 2018 , 46, 356-364	17.1	37	
362	Do built-in fields improve solar cell performance?. <i>Progress in Photovoltaics: Research and Applications</i> , 2009 , 17, 57-66	6.8	37	
361	Intermediate band solar cell with many bands: Ideal performance. <i>Journal of Applied Physics</i> , 2003 , 94, 6150-6158	2.5	37	
360	Solar cell efficiency tables (version 18). <i>Progress in Photovoltaics: Research and Applications</i> , 2001 , 9, 287	~2.9 3	37	
359	Recombination rate saturation mechanisms at oxidized surfaces of high-efficiency silicon solar cells. <i>Journal of Applied Physics</i> , 1995 , 78, 4740-4754	2.5	37	
358	Two-dimensional numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells. <i>Journal of Applied Physics</i> , 1994 , 75, 5391-5405	2.5	37	
357	Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies. <i>Materials Today</i> , 2020 , 41, 120-142	21.8	37	
356	Lessons Learnt from Spatially Resolved Electro- and Photoluminescence Imaging: Interfacial Delamination in CH3NH3PbI3 Planar Perovskite Solar Cells upon Illumination. <i>Advanced Energy Materials</i> , 2017 , 7, 1602111	21.8	36	

355	Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 08KD04	1.4	36
354	BlueDiolet photoluminescence from colloidal suspension of nanocrystalline silicon in silicon oxide matrix. <i>Solid State Communications</i> , 2009 , 149, 352-356	1.6	36
353	Improved estimates for Te and Se availability from Cu anode slimes and recent price trends. <i>Progress in Photovoltaics: Research and Applications</i> , 2006 , 14, 743-751	6.8	36
352	Limiting photovoltaic monochromatic light conversion efficiency. <i>Progress in Photovoltaics:</i> Research and Applications, 2001 , 9, 257-261	6.8	36
351	A 15% efficient silicon MIS solar cell. <i>Applied Physics Letters</i> , 1978 , 33, 637-639	3.4	36
350	A novel silver nanoparticle assisted texture as broadband antireflection coating for solar cell applications. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 109, 233-239	6.4	35
349	Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27256-27262	3.8	35
348	Epitaxial Cu2ZnSnS4 thin film on Si (111) 4\(\text{1}\)substrate. Applied Physics Letters, 2015 , 106, 252102	3.4	35
347	Phonon lifetimes in model quantum dot superlattice systems with applications to the hot carrier solar cell. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1931-1935	6.4	35
346	In situ low temperature growth of poly-crystalline germanium thin film on glass by RF magnetron sputtering. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1501-1505	6.4	35
345	Departures from the principle of superposition in silicon solar cells. <i>Journal of Applied Physics</i> , 1994 , 76, 7920-7930	2.5	35
344	Solar cell minority carrier lifetime using open-circuit voltage decay. Solar Cells, 1984, 11, 147-161		35
343	Investigation of polycrystalline silicon deposition on glass substrates. <i>Solar Energy Materials and Solar Cells</i> , 1993 , 31, 51-60	6.4	34
342	Correlation between current-voltage and capacitance-voltage Schottky barrier height on (100) and (110) GaAs and (110) InP surfaces. <i>Journal of Applied Physics</i> , 1990 , 68, 3470-3474	2.5	34
341	Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing. <i>Nanotechnology</i> , 2008 , 19, 455611	3.4	33
340	SHORT COMMUNICATION: Solar cell efficiency tables (version 25). <i>Progress in Photovoltaics:</i> Research and Applications, 2005 , 13, 49-54	6.8	33
339	Prospects for photovoltaic efficiency enhancement using low-dimensional structures. <i>Nanotechnology</i> , 2000 , 11, 401-405	3.4	33
338	Re-evaluation of literature values of silver optical constants. <i>Optics Express</i> , 2015 , 23, 2133-44	3.3	32

(2016-2018)

337	Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface. <i>ACS Applied Energy Materials</i> , 2018 , 1, 154-160	6.1	32
336	Analytical expressions for spectral composition of band photoluminescence from silicon wafers and bricks. <i>Applied Physics Letters</i> , 2011 , 99, 131112	3.4	32
335	Formation of heavily boron-doped hydrogenated polycrystalline germanium thin films by co-sputtering for developing p+ emitters of bottom cells. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 981-985	6.4	32
334	Excitons in silicon diodes and solar cells: A three-particle theory. <i>Journal of Applied Physics</i> , 1996 , 79, 195-203	2.5	32
333	Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. <i>Nano Energy</i> , 2020 , 69, 104438	17.1	32
332	Impact of microstructure on the electronfiole interaction in lead halide perovskites. <i>Energy and Environmental Science</i> , 2017 , 10, 1358-1366	35.4	31
331	The Impact of a Dynamic Two-Step Solution Process on Film Formation of Cs (MA FA) PbI Perovskite and Solar Cell Performance. <i>Small</i> , 2019 , 15, e1804858	11	31
330	A full thermal model for photovoltaic devices. <i>Solar Energy</i> , 2016 , 140, 73-82	6.8	31
329	. IEEE Transactions on Electron Devices, 1994 , 41, 1556-1569	2.9	31
328	High-efficiency, laser grooved, buried contact silicon solar cells. <i>Applied Physics Letters</i> , 1988 , 52, 407-40	09.4	31
327	From junction to terminal: Extended reciprocity relations in solar cell operation. <i>Physical Review B</i> , 2012 , 85,	3.3	30
326	Optical gain in materials with indirect transitions. <i>Journal of Applied Physics</i> , 2003 , 93, 9058-9061	2.5	30
325	Minority carrier lifetimes using compensated differental open circuit voltage decay. <i>Solid-State Electronics</i> , 1983 , 26, 1117-1122	1.7	30
324	Correlation between stress and carrier nonradiative recombination for silicon nanocrystals in an oxide matrix. <i>Nanotechnology</i> , 2011 , 22, 335703	3.4	29
323	Enhancement of Schottky solar cell efficiency above its semiempirical limit. <i>Applied Physics Letters</i> , 1975 , 27, 287-288	3.4	29
322	Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu2ZnSnS4 solar cells by forming nearly micron-sized large grains. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23185-23193	13	28
321	Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 182, 14-20	6.4	28
320	Experimental Assessment of Temperature Coefficient Theories for Silicon Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2016 , 6, 56-60	3.7	28

319	Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF2/ZnS antireflection coatings and on the performance of high-efficiency silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 1998 , 51, 393-400	6.4	28
318	Resonant tunneling through defects in an insulator: Modeling and solar cell applications. <i>Journal of Applied Physics</i> , 2004 , 96, 5006-5012	2.5	28
317	Current transport mechanisms studied by I-V-T and IR photoemission measurements on a P-doped PtSi Schottky diode. <i>Solid-State Electronics</i> , 1993 , 36, 1107-1116	1.7	28
316	Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells. <i>Nano Energy</i> , 2019 , 63, 103853	17.1	27
315	Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications. <i>Small Methods</i> , 2020 , 4, 2000074	12.8	27
314	The depletion layer collection efficiency for p-n junction, Schottky diode, and surface insulator solar cells. <i>Journal of Applied Physics</i> , 1976 , 47, 547-554	2.5	27
313	The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu2ZnSnS4 solar cells. <i>Thin Solid Films</i> , 2018 , 648, 39-45	2.2	26
312	Improved nanocrystal formation, quantum confinement and carrier transport properties of doped Si quantum dot superlattices for third generation photovoltaics. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 569-577	6.8	26
311	Comparison of DLIT- and PL-based Local Solar Cell Efficiency Analysis. <i>Energy Procedia</i> , 2013 , 38, 2-12	2.3	26
310	Improved value for the silicon free exciton binding energy. AIP Advances, 2013, 3, 112104	1.5	26
309	Solar cell efficiency tables (version 19). <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 55-61	6.8	26
308	Rear surface passivation of high-efficiency silicon solar cells by a floating junction. <i>Journal of Applied Physics</i> , 1996 , 80, 3574-3586	2.5	26
307	Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells. <i>Joule</i> , 2018 , 2, 2694-2705	27.8	26
306	Investigation of boron antimonide as hot carrier absorber material. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 111, 123-126	6.4	25
305	Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells. <i>Nanoscale Research Letters</i> , 2010 , 5, 1762-1767	5	25
304	Interpretation of the Commonly Observed I-V Characteristics of C-SI Cells Having Ideality Factor Larger Than Two 2006 ,		25
303	Solar cell efficiency tables (version 24). <i>Progress in Photovoltaics: Research and Applications</i> , 2004 , 12, 365-372	6.8	25
302	Solar cell efficiency tables (version 3). <i>Progress in Photovoltaics: Research and Applications</i> , 1994 , 2, 27-3	34 6.8	25

301	Self-assembled Nanometer-Scale ZnS Structure at the CZTS/ZnCdS Heterointerface for High-Efficiency Wide Band Gap Cu2ZnSnS4 Solar Cells. <i>Chemistry of Materials</i> , 2018 , 30, 4008-4016	9.6	25	
300	Quasi-Vertically-Orientated Antimony Sulfide Inorganic Thin-Film Solar Cells Achieved by Vapor Transport Deposition. <i>ACS Applied Materials & Description (Note of Supplied Materials & Description (N</i>	9.5	24	
299	Limiting photovoltaic efficiency under new ASTM International G173-based reference spectra. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 954-959	6.8	24	
298	Learning experience for thin-film solar modules: First Solar, Inc. case study. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 498-500	6.8	24	
297	Bounds upon grain boundary effects in minority carrier semiconductor devices: A rigorous Berturbation application to silicon solar cells. <i>Journal of Applied Physics</i> , 1996 , 80, 1515-1	5 25	24	
296	Solar cell efficiency tables (version 23). <i>Progress in Photovoltaics: Research and Applications</i> , 2004 , 12, 55-62	6.8	24	
295	Solar cell efficiency tables (version 21). <i>Progress in Photovoltaics: Research and Applications</i> , 2003 , 11, 39-45	6.8	24	
294	Surface passivation in high efficiency silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 65, 377-384	6.4	24	
293	The future of crystalline silicon solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2000 , 8, 127-139	6.8	24	
292	Beyond 10% efficiency Cu2ZnSnS4 solar cells enabled by modifying the heterojunction interface chemistry. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 27289-27296	13	24	
291	High-efficiency optical emission, detection, and coupling using silicon diodes. <i>Journal of Applied Physics</i> , 2002 , 92, 2977-2979	2.5	23	
29 0	Solar cell efficiency tables (version 14). <i>Progress in Photovoltaics: Research and Applications</i> , 1999 , 7, 321	I-3.86	23	
289	Doping of Silicon Quantum Dots Embedded in Nitride Matrix for All-Silicon Tandem Cells. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 10NE10	1.4	23	
288	Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2021 , 6, 925-933	20.1	23	
287	Corrigendum to Bolar cell efficiency tables (version 49)[Prog. Photovolt: Res. Appl. 2017; 25:3🛚 3]. Progress in Photovoltaics: Research and Applications, 2017 , 25, 333-334	6.8	22	
286	Impact of interface on the effective band gap of Si quantum dots. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 753-758	6.4	22	
285	Solar Cell Efficiency Tables (Version 9). Progress in Photovoltaics: Research and Applications, 1997, 5, 51-	54 .8	22	
284	22.7% efficient silicon photovoltaic modules with textured front surface. <i>IEEE Transactions on Electron Devices</i> , 1999 , 46, 1495-1497	2.9	22	

283	Solar cell efficiency tables (version 2). <i>Progress in Photovoltaics: Research and Applications</i> , 1993 , 1, 225-	26.8	22
282	The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors. <i>Scientific Reports</i> , 2017 , 7, 12826	4.9	21
281	Scaling limits to large area perovskite solar cell efficiency. <i>Progress in Photovoltaics: Research and Applications</i> , 2018 , 26, 659-674	6.8	21
280	Improved local efficiency imaging via photoluminescence for silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 123, 41-46	6.4	21
279	Intermediate Layer Development for Laser-Crystallized Thin-Film Silicon Solar Cells on Glass. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 9-16	3.7	21
278	Size dependent optical properties of Si quantum dots in Si-rich nitride/Si3N4 superlattice synthesized by magnetron sputtering. <i>Journal of Applied Physics</i> , 2011 , 109, 064302	2.5	21
277	Effects of non-ideal energy selective contacts and experimental carrier cooling rate on the performance of an indium nitride based hot carrier solar cell. <i>Applied Physics Letters</i> , 2011 , 99, 223507	3.4	21
276	Improved efficiency silicon solar cell module. <i>IEEE Electron Device Letters</i> , 1997 , 18, 48-50	4.4	21
275	Antireflection and surface passivation behaviour of SiO2/Si/SiO2 quantum wells on silicon. <i>Solar Energy Materials and Solar Cells</i> , 2002 , 74, 147-154	6.4	21
274	Solar cell efficiency tables (version 26). <i>Progress in Photovoltaics: Research and Applications</i> , 2005 , 13, 387-392	6.8	21
273	Solar cell efficiency tables (version 7). <i>Progress in Photovoltaics: Research and Applications</i> , 1996 , 4, 59-6	2 6.8	21
272	Solar cell efficiency tables (version 4). <i>Progress in Photovoltaics: Research and Applications</i> , 1994 , 2, 231-	26.8	21
271	Characteristics of p-type PtSi Schottky diodes under reverse bias. <i>Journal of Applied Physics</i> , 1990 , 68, 4127-4132	2.5	21
270	678-mV open-circuit voltage silicon solar cells. <i>Applied Physics Letters</i> , 1981 , 39, 483-485	3.4	21
269	Rapid thermal annealed Molybdenum back contact for Cu2ZnSnS4 thin film solar cells. <i>Applied Physics Letters</i> , 2015 , 106, 131110	3.4	20
268	Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 143, 48-51	6.4	20
267	Study of sputtered Cu2ZnSnS4 thin films on Si. <i>Applied Surface Science</i> , 2018 , 459, 700-706	6.7	20
266	Quantitative evaluation of boron-induced disorder in multilayers containing silicon nanocrystals in an oxide matrix designed for photovoltaic applications. <i>Optics Express</i> , 2010 , 18, 22004-9	3.3	20

Solar cell efficiency tables (version 8). Progress in Photovoltaics: Research and Applications, 1996, 4, 321-328 265 20 Recent Advances in Silicon Solar Cell Performance 1991, 250-253 264 20 Micro-structural defects in polycrystalline silicon thin-film solar cells on glass by solid-phase crystallisation and laser-induced liquid-phase crystallisation. Solar Energy Materials and Solar Cells, 263 6.4 19 2015, 132, 282-288 Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar 262 7.7 19 cells. Nanoscale, 2013, 5, 7499-504 Defect annealing in ultra-thin polycrystalline silicon films on glass: Rapid thermal versus laser 261 3.3 19 processing. Materials Letters, 2013, 107, 1-4 Electrical properties of conductive Ge nanocrystal thin films fabricated by low temperature in situ 260 3.4 19 growth. Nanotechnology, 2011, 22, 125204 High-resolution stress assessments of interconnect/dielectric electronic patterns using optically 259 19 2.5 active point defects of silica glass as a stress sensor. Journal of Applied Physics, 2007, 101, 093514 Impurity photovoltaic effect with defect relaxation: Implications for low band gap semiconductors 258 2.5 19 such as silicon. Journal of Applied Physics, 2004, 96, 2603-2609 Performance degradation in CZ(B) cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SEH MCZ(B), FZ(B) and CZ(Ga) substrates. Progress in Photovoltaics: 6.8 19 257 Research and Applications, 2000, 8, 549-558 Improved value for the silicon intrinsic carrier concentration at 300 K. Applied Physics Letters, 1990, 256 3.4 19 57, 255-257 Accurate expressions for solar cell fill factors including series and shunt resistances. Applied Physics 19 255 3.4 Letters, 2016, 108, 081111 Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and 254 2.5 19 device degradation in planar perovskite solar cells. Journal of Applied Physics, 2016, 120, 035702 Designing Bottom Silicon Solar Cells for Multijunction Devices. IEEE Journal of Photovoltaics, 2015, 18 253 3.7 5,683-690 Cyclic thermal annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering. Thin Solid 2.2 18 252 Films, 2015, 574, 99-102 16.4% efficient, thin active layer silicon solar cell grown by liquid phase epitaxy. Solar Energy 6.4 18 251 Materials and Solar Cells, 1996, 40, 231-238 Accelerated publication 23.5% efficient silicon solar cell. Progress in Photovoltaics: Research and 6.8 18 250 Applications, 1994, 2, 227-230 Kesterite Solar Cells: Insights into Current Strategies and Challenges. Advanced Science, 2021, 8, 20043133.6 249 18 Optical Probe Ion and Carrier Dynamics at the CH3NH3PbI3 Interface with Electron and Hole 18 248 4.6 Transport Materials. Advanced Materials Interfaces, 2016, 3, 1600467

247	Boosting the kesterite Cu2ZnSnS4 solar cells performance by diode laser annealing. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 175, 71-76	6.4	18
246	Sentaurus modelling of 6.9% Cu2ZnSnS4 device based on comprehensive electrical & optical characterization. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 160, 372-381	6.4	17
245	The roles of shallow and deep levels in the recombination behavior of polycrystalline silicon on glass solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 915-922	6.8	17
244	Solar cell efficiency tables (version 10). <i>Progress in Photovoltaics: Research and Applications</i> , 1997 , 5, 26	5- &6 8	17
243	Solar cell efficiency tables (version 13). <i>Progress in Photovoltaics: Research and Applications</i> , 1999 , 7, 31	- 36 .8	17
242	Solar cell efficiency tables (version 5). <i>Progress in Photovoltaics: Research and Applications</i> , 1995 , 3, 51-5	55 6.8	17
241	High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution-Based Li Post-Deposition Treatment. <i>Advanced Energy Materials</i> , 2021 , 11, 2003783	21.8	17
240	Full Spectrum Photoluminescence Lifetime Analyses on Silicon Bricks. <i>IEEE Journal of Photovoltaics</i> , 2013 , 3, 962-969	3.7	16
239	Low-Temperature Solution Processed Random Silver Nanowire as a Promising Replacement for Indium Tin Oxide. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 34093-34100	9.5	16
238	Influence of hydrogen on structural and optical properties of low temperature polycrystalline Ge films deposited by RF magnetron sputtering. <i>Journal of Crystal Growth</i> , 2010 , 312, 2647-2655	1.6	16
237	Study of silicon quantum dots in a SiO2 matrix for energy selective contacts applications. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1936-1941	6.4	16
236	Excitation dependence of photoluminescence in silicon quantum dots. <i>New Journal of Physics</i> , 2007 , 9, 337-337	2.9	16
235	Minority carrier mobility of Czochralski-grown silicon by microwave-detected photoconductance decay. <i>Journal of Applied Physics</i> , 1993 , 74, 6212-6216	2.5	16
234	Decreased emitter sheet resistivity loss in high-eficiency silicon solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 1994 , 2, 3-17	6.8	16
233	Oxidation condition dependence of surface passivation in high efficiency silicon solar cells. <i>Applied Physics Letters</i> , 1985 , 47, 818-820	3.4	16
232	Photocurrent loss within the depletion region of polycrystalline solar cells. <i>Solid-State Electronics</i> , 1978 , 21, 1139-1144	1.7	16
231	Improvement of Cs-(FAPbI3)0.85(MAPbBr3)0.15 Quality Via DMSO-Molecule-Control to Increase the Efficiency and Boost the Long-Term Stability of 1 cm2 Sized Planar Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1800338	7.1	15
230	N-type conductivity of nanostructured thin film composed of antimony-doped Si nanocrystals in silicon nitride matrix. <i>Europhysics Letters</i> , 2011 , 96, 17011	1.6	15

229	Large Grained, Low Defect Density Polycrystalline Silicon on Glass Substrates by Large-area Diode Laser Crystallisation. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1426, 251-256		15	
228	. IEEE Transactions on Electron Devices, 1994 , 41, 1592-1594	2.9	15	
227	Recent progress and future prospects of perovskite tandem solar cells. <i>Applied Physics Reviews</i> , 2021 , 8, 041307	17.3	15	
226	Light-Bias-Dependent External Quantum Efficiency of Kesterite Cu2ZnSnS4 Solar Cells. <i>ACS Photonics</i> , 2017 , 4, 1684-1690	6.3	14	
225	Radio frequency magnetron sputtered epitaxial Cu2ZnSnS4 thin film on ZnS(100). <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 404-407	2.5	14	
224	In situ growth of Ge-rich poly-SiGe:H thin films on glass by RF magnetron sputtering for photovoltaic applications. <i>Applied Surface Science</i> , 2011 , 257, 4354-4359	6.7	14	
223	Intermediate Layers for Thin-Film Polycrystalline Silicon Solar Cells on Glass Formed by Diode Laser Crystallization. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1426, 63-68		14	
222	Spatially resolved photoluminescence imaging of essential silicon solar cell parameters 2012,		14	
221	Fabrication and characterization of tin-based nanocrystals. <i>Journal of Applied Physics</i> , 2007 , 102, 114304	12.5	14	
220	Two new efficient crystalline silicon light-trapping textures. <i>Progress in Photovoltaics: Research and Applications</i> , 1999 , 7, 317-320	6.8	14	
219	Enhancement of MIS solar-cell defficiency by peripheral collection. <i>Applied Physics Letters</i> , 1977 , 31, 705-707	3.4	14	
218	Luminescence Imaging Characterization of Perovskite Solar Cells: A Note on the Analysis and Reporting the Results. <i>Advanced Energy Materials</i> , 2018 , 8, 1702256	21.8	13	
217	High open-circuit voltage CuSbS2 solar cells achieved through the formation of epitaxial growth of CdS/CuSbS2 hetero-interface by post-annealing treatment. <i>Progress in Photovoltaics: Research and Applications</i> , 2019 , 27, 37-43	6.8	13	
216	Results from coupled optical and electrical sentaurus TCAD models of a gallium phosphide on silicon electron carrier selective contact solar cell 2014 ,		13	
215	Ideal solar cell equation in the presence of photon recycling. <i>Journal of Applied Physics</i> , 2014 , 116, 1745	121 .5	13	
214	Depletion region recombination in silicon thin-film multilayer solar cells. <i>Progress in Photovoltaics:</i> Research and Applications, 1998 , 4, 375-380	6.8	13	
213	Photoluminescence in crystalline silicon quantum wells. <i>Journal of Applied Physics</i> , 2007 , 101, 024321	2.5	13	
212	Solar cell efficiency tables (version 16). <i>Progress in Photovoltaics: Research and Applications</i> , 2000 , 8, 377	-6.8 3	13	

211	Junction recombination current in abrupt junction diodes under forward bias. <i>Journal of Applied Physics</i> , 1996 , 80, 3083-3090	2.5	13
210	Band edge optical absorption in intrinsic silicon: Assessment of the indirect transition and disorder models. <i>Journal of Applied Physics</i> , 1993 , 73, 3988-3996	2.5	13
209	Evaluation of binary and ternary melts for the low temperature liquid phase epitaxial growth of silicon. <i>Journal of Electronic Materials</i> , 1991 , 20, 635-641	1.9	13
208	Low-temperature liquid phase epitaxy of silicon. <i>Materials Letters</i> , 1991 , 12, 339-343	3.3	13
207	The efficiency of grating solar cells. <i>Journal of Applied Physics</i> , 1978 , 49, 437-442	2.5	13
206	Time-resolved fluorescence anisotropy study of organic lead halide perovskite. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 151, 102-112	6.4	12
205	Photoluminescence based open circuit voltage and effective lifetime images re-interpretation for solar cells: The influence of horizontal balancing currents. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 393-396	6.4	12
204	Epitaxial growth of single-crystalline silicongermanium on silicon by aluminium-assisted crystallization. <i>Scripta Materialia</i> , 2014 , 71, 25-28	5.6	12
203	Optimisation of the Back Surface Reflector for Textured Polycrystalline Si Thin Film Solar Cells. <i>Energy Procedia</i> , 2013 , 33, 118-128	2.3	12
202	Hybrid Ag Nanowire I TO as Transparent Conductive Electrode for Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 20597-20604	3.8	12
201	Optical modelling data for room temperature optical properties of organic-inorganic lead halide perovskites. <i>Data in Brief</i> , 2015 , 3, 201-8	1.2	12
200	Anomalous temperature dependence of diode saturation currents in polycrystalline silicon thin-film solar cells on glass. <i>Journal of Applied Physics</i> , 2009 , 105, 103705	2.5	12
199	High external quantum efficiency of planar semiconductor structures. <i>Semiconductor Science and Technology</i> , 2004 , 19, 1232-1235	1.8	12
198	SHORT COMMUNICATION: Price/efficiency correlations for 2004 photovoltaic modules. <i>Progress in Photovoltaics: Research and Applications</i> , 2005 , 13, 85-87	6.8	12
197	Solar cell efficiency tables (version 6). <i>Progress in Photovoltaics: Research and Applications</i> , 1995 , 3, 229	-26.8	12
196	The effects of solvent and dopant impurities on the performance of LPE silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 1996 , 41-42, 53-60	6.4	12
195	. IEEE Electron Device Letters, 1993 , 14, 539-541	4.4	12
194	717-mV open-circuit voltage silicon solar cells using hole-constrained surface passivation. <i>Applied Physics Letters</i> , 1994 , 64, 199-201	3.4	12

(2021-2016)

193	Photoluminescent and electroluminescent couplings in monolithic tandem solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 1566-1576	6.8	12
192	Diode laser annealing on Ge/Si (100) epitaxial films grown by magnetron sputtering. <i>Thin Solid Films</i> , 2016 , 609, 49-52	2.2	12
191	Self-Assembled Nanostructured Rear Reflector Designs for Thin-Film Solar Cells. <i>ACS Photonics</i> , 2015 , 2, 1108-1116	6.3	11
190	Equivalent circuit analysis of radiative coupling in monolithic tandem solar cells. <i>Applied Physics Letters</i> , 2015 , 106, 263902	3.4	11
189	Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics. <i>Nanoscale Research Letters</i> , 2011 , 6, 612	5	11
188	Characterisation of size-controlled and red luminescent Ge nanocrystals in multilayered superlattice structure. <i>Thin Solid Films</i> , 2010 , 518, 5483-5487	2.2	11
187	High-efficiency Multicrystalline Silicon Solar Cells using Standard High-temperature, Float-zoned Cell Processing. <i>Progress in Photovoltaics: Research and Applications</i> , 1997 , 5, 169-174	6.8	11
186	Ultrafast carrier dynamics of Si quantum dots embedded in SiN matrix. <i>Applied Physics Letters</i> , 2007 , 90, 081105	3.4	11
185	Atomistic structure of SiO2BiBiO2 quantum wells with an apparently crystalline silicon oxide. Journal of Applied Physics, 2004 , 96, 3211-3216	2.5	11
184	Two-dimensional numerical simulations of high-efficiency silicon solar cells. <i>Microelectronics Journal</i> , 1995 , 26, 273-286	1.8	11
183	Electrostatic effects in inversion-layer metal-insulator-semiconductor solar cells. <i>Applied Physics Letters</i> , 1980 , 37, 1087-1089	3.4	11
182	Extraction of black hole coalescence waveforms from noisy data. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 784, 312-323	4.2	11
181	Rare materials for photovoltaics: Recent tellurium price fluctuations and availability from copper refining. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 119, 256-260	6.4	10
180	Structural inhomogeneities in polycrystalline silicon on glass solar cells and their effects on device characteristics. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 695-705	6.8	10
179	Modeling and optimization of thin-film devices with Si/sub 1-x/Ge/sub x/ alloys. <i>IEEE Transactions on Electron Devices</i> , 1999 , 46, 2111-2115	2.9	10
178	17.6% efficient multilayer thin-film silicon solar cells deposited on heavily doped silicon substrates. <i>Progress in Photovoltaics: Research and Applications</i> , 1996 , 4, 369-373	6.8	10
177	The short-wavelength response of MIS solar cells. <i>Journal of Applied Physics</i> , 1979 , 50, 1116-1122	2.5	10
176	Kinetics of light-induced degradation in semi-transparent perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 219, 110776	6.4	10

175	Simplified technique for calculating mismatch loss in mass production. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 134, 236-243	6.4	9
174	A holistic review of mismatch loss: From manufacturing decision making to losses in fielded arrays. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 174, 214-224	6.4	9
173	Transient photoconductance and photoluminescence from thick silicon wafers and bricks: Analytical solutions. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 111, 189-192	6.4	9
172	Silicon wafer-based tandem cells: The ultimate photovoltaic solution? 2014 ,		9
171	Analytical treatment of Trivich Ilinn and Shockley Queisser photovoltaic efficiency limits using polylogarithms. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 127-134	6.8	9
170	Single layer of silicon quantum dots in silicon oxide matrix: Investigation of forming gas hydrogenation on photoluminescence properties and study of the composition of silicon rich oxide layers. <i>Journal of Crystal Growth</i> , 2011 , 327, 84-88	1.6	9
169	Surface states induced high P-type conductivity in nanostructured thin film composed of Ge nanocrystals in SiO2 matrix. <i>Applied Physics Letters</i> , 2010 , 97, 132109	3.4	9
168	Impact of bridge- and double-bonded oxygen on OH-terminated Si quantum dots: A density-functional: Bartree: Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009 , 159-160, 117-121	3.1	9
167	Event Report. Brain Sport: The 1996 World Solar Challenge Solar Car Race Across Australia. <i>Progress in Photovoltaics: Research and Applications</i> , 1997 , 5, 69-76	6.8	9
166	Solar cell efficiency tables (version 12). Progress in Photovoltaics: Research and Applications, 1998, 6, 26	5 <i>-</i> 2.80	9
165	Evidence for generalized Kirchhoff law from angle-resolved electroluminescence of high efficiency silicon solar cells. <i>Applied Physics Letters</i> , 2004 , 85, 2484-2486	3.4	9
164	Near-band edge light emission from silicon semiconductor on insulator diodes. <i>Applied Physics Letters</i> , 2004 , 85, 2830-2832	3.4	9
163	High external quantum efficiency from double heterostructure InGaP/GaAs layers as selective emitters for thermophotonic systems. <i>Semiconductor Science and Technology</i> , 2004 , 19, 1268-1272	1.8	9
162	Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time-Resolved Microspectroscopy <i>Small Methods</i> , 2021 , 5, e2000731	12.8	9
161	Deconstruction-assisted perovskite formation for sequential solution processing of Cs0.15(MA0.7FA0.3)0.85PbI3 solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 203, 110200	6.4	8
160	Analytical expressions for spectral composition of band luminescence from silicon solar cells under optical and electrical bias. <i>Applied Physics Letters</i> , 2014 , 104, 173902	3.4	8
160 159		3.4	8

157	Recent Developments and Future Prospects for Third Generation and Other Advanced Cells 2006,		8
156	Thin semiconducting layers and nanostructures as active and passive emitters for thermophotonics and thermophotovoltaics. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 14, 91-95	3	8
155	Two-dimensional minority carrier flow in high-efficiency silicon solar cells at short-circuit, open-circuit and maximum power point operating conditions. <i>Solar Energy Materials and Solar Cells</i> , 1994 , 34, 149-160	6.4	8
154	World solar challenge 1993: The trans-australian solar car race. <i>Progress in Photovoltaics: Research and Applications</i> , 1994 , 2, 73-79	6.8	8
153	A note on current-voltage measurements of n-type and p-type Pd2Si Schottky diodes. <i>Solid-State Electronics</i> , 1991 , 34, 215-216	1.7	8
152	Sublinear current response in high-efficiency, high-resistivity silicon solar cells: Theory and experiment. <i>Applied Physics Letters</i> , 1988 , 52, 1361-1363	3.4	8
151	Defect-Resolved Effective Majority Carrier Mobility in Highly Anisotropic Antimony Chalcogenide Thin-Film Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000693	7.1	8
150	High-voltage p-type PERC solar cells with anchored plating and hydrogenation. <i>Progress in Photovoltaics: Research and Applications</i> , 2018 , 26, 397-401	6.8	7
149	Diode laser crystallization processes of Si thin-film solar cells on glass. <i>EPJ Photovoltaics</i> , 2014 , 5, 55204	10.7	7
148	Compatibility of glass textures with E-beam evaporated polycrystalline silicon thin-film solar cells. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 111, 935-942	2.6	7
147	Lateral growth of Ge nanocrystals in a thin Ge-rich silicon nitride layer. <i>Journal of Crystal Growth</i> , 2013 , 383, 36-42	1.6	7
146	Extended spectral response analysis of conventional and front surface field solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 134, 346-350	6.4	7
145	Hot Carrier solar cell absorbers: Superstructures, materials and mechanisms for slowed carrier cooling 2012 ,		7
144	Structural and optical study of Ge nanocrystals embedded in Si3N4 matrix. <i>Energy Procedia</i> , 2011 , 10, 20-27	2.3	7
143	Perturbation Theory for Solar Cell Efficiency IBasic Principles. <i>IEEE Transactions on Electron Devices</i> , 2011 , 58, 4011-4015	2.9	7
142	Structural dependence of electrical properties of Ge films prepared by RF magnetron sputtering. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 102, 689-694	2.6	7
141	Price and supply constraints on Te and In photovoltaics 2010,		7
140	An optimized prismatic cover design for concentrator and nonconcentrator solar cells. <i>Journal of Applied Physics</i> , 1990 , 68, 1345-1350	2.5	7

139	Crystalline and polycrystalline silicon tandem junction solar cells: Theoretical advantages. <i>Solar Cells</i> , 1986 , 18, 31-40		7
138	Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan. <i>Progress in Photovoltaics: Research and Applications</i> , 2021 , 29, 899-906	6.8	7
137	Systematic Efficiency Improvement for Cu2ZnSn(S,Se)4 Solar Cells By Double Cation Incorporation with Cd and Ge. <i>Advanced Functional Materials</i> , 2021 , 31, 2104528	15.6	7
136	Temperature Coefficients of Photovoltaic Devices 2017 , 29-74		6
135	Design of an intermediate Bragg reflector within triple-junction solar cells for spectrum splitting applications. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 193, 259-269	6.4	6
134	In-situ fabrication and characterization of ordered Ge QDs in Si3N4 matrix without barrier layers by rf-magnetron sputtering. <i>Applied Surface Science</i> , 2014 , 290, 167-171	6.7	6
133	One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering. <i>Applied Physics Letters</i> , 2014 , 104, 052107	3.4	6
132	Hot carrier solar cells: Challenges and recent progress 2010 ,		6
131	Impact of disorder in double barrier QD structures on energy selectivity investigated by two dimensional effective mass approximation. <i>Energy Procedia</i> , 2010 , 2, 213-219	2.3	6
130	Technology and economics of three advanced silicon solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 1998 , 6, 169-180	6.8	6
129	A modified ShockleyRead⊞all theory including radiative transitions. <i>Solid-State Electronics</i> , 2003 , 47, 685-689	1.7	6
128	Recent progress in crystalline and polycrystalline silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 1991 , 23, 111-116		6
127	Experimental bounds on band-gap narrowing set by high open circuit voltage silicon solar cells. Journal of Applied Physics, 1985 , 57, 591-599	2.5	6
126	Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment. <i>Solar Rrl</i> , 2020 , 4, 1900397	7.1	6
125	Grain boundary effects on the optical constants and Drude relaxation times of silver films. <i>Journal of Applied Physics</i> , 2016 , 120, 233109	2.5	6
124	The potential and design principle for next-generation spectrum-splitting photovoltaics: Targeting 50% efficiency through built-in filters and generalization of concept. <i>Progress in Photovoltaics:</i> Research and Applications, 2019 , 27, 899-904	6.8	6
123	11.6% Efficient Pure Sulfide Cu(In,Ga)S2 Solar Cell through a Cu-Deficient and KCN-Free Process. <i>ACS Applied Energy Materials</i> , 2020 , 3, 11974-11980	6.1	5
122	Epitaxial growth of Cu2ZnSnS4 thin film on Si by radio frequency magnetron sputtering. <i>Applied Physics Letters</i> , 2020 , 116, 123901	3.4	5

(2011-2020)

Evidence of Low-Temperature Joints in Silver Nanowire Based Transparent Conducting Layers for Solar Cells. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3205-3213	5.6	5	
Data mining photovoltaic cell manufacturing data 2014,		5	
Is sour crude or sour gas a potential source of Se and Te?. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 991-995	6.8	5	
Structural studies of multilayered Ge nanocrystals embedded in SiO2 matrix fabricated using magnetron sputtering. <i>Energy Procedia</i> , 2010 , 2, 243-250	2.3	5	
CRYSTALLINE SILICON SOLAR CELLS. Series on Photoconversion of Solar Energy, 2001, 149-197		5	
Bias and thickness dependence of the infra-red Schottky diode studied by internal photoemission. <i>Solid-State Electronics</i> , 1996 , 39, 277-280	1.7	5	
9.6%-Efficient all-inorganic Sb2(S,Se)3 solar cells with a MnS hole-transporting layer. <i>Journal of Materials Chemistry A</i> ,	13	5	
Optimization of solar thermophotovoltaic systems including the thermal balance 2016,		5	
24店% Efficiency silicon PERT cells on MCZ substrates and 24년% efficiency PERL cells on FZ substrates 1999 , 7, 471		5	
Solar Cell Efficiency Tables		5	
Large-Grain Spanning Monolayer Cu ZnSnSe Thin-Film Solar Cells Grown from Metal Precursor <i>Small</i> , 2021 , e2105044	11	5	
Diode laser annealing on sputtered epitaxial Cu2ZnSnS4 thin films. <i>Physica Status Solidi - Rapid Research Letters</i> , 2017 , 11, 1700033	2.5	4	
Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1638, 1		4	
Fast separation of front and bulk defects via photoluminescence on silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 128, 260-263	6.4	4	
A photovoltaic light trapping estimation method for textured glass based on surface decoupling calculation. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 109, 82-90	6.4	4	
Structural and photoluminescence properties of superlattice structures consisting of Sn-rich SiO2 and stoichiometric SiO2 layers. <i>Thin Solid Films</i> , 2011 , 520, 641-645	2.2	4	
Capacitance and conductance characteristics of silicon nanocrystal metallhsulator lemiconductor devices. <i>Solid-State Electronics</i> , 2009 , 53, 530-539	1.7	4	
	Data mining photovoltaic cell manufacturing data 2014, Is sour crude or sour gas a potential source of Se and Te?. Progress in Photovoltaics: Research and Applications, 2011, 19, 991-995 Structural studies of multilayered Ge nanocrystals embedded in SiO2 matrix fabricated using magnetron sputtering. Energy Procedia, 2010, 2, 243-250 CRYSTALLINE SILICON SOLAR CELLS. Series on Photoconversion of Solar Energy, 2001, 149-197 Bias and thickness dependence of the infra-red Schottky diode studied by internal photoemission. Solid-State Electronics, 1996, 39, 277-280 9.6%-Efficient all-inorganic Sb2(S,Se)3 solar cells with a MnS hole-transporting layer. Journal of Materials Chemistry A, Optimization of solar thermophotovoltaic systems including the thermal balance 2016, 24[B% Efficiency silicon PERT cells on MCZ substrates and 24[T% efficiency PERL cells on FZ substrates 1999, 7, 471 Solar Cell Efficiency Tables Large-Grain Spanning Monolayer Cu ZnSnSe Thin-Film Solar Cells Grown from Metal Precursor Small, 2021, e2105044 Diode laser annealing on sputtered epitaxial Cu2ZnSnS4 thin films. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700033 Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. Materials Research Society Symposia Proceedings, 2014, 1638, 1 Fast separation of front and bulk defects via photoluminescence on silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 128, 260-263 A photovoltaic light trapping estimation method for textured glass based on surface decoupling calculation. Solar Energy Materials and Solar Cells, 2013, 109, 82-90 Structural and photoluminescence properties of superlattice structures consisting of Sn-rich SiO2	Data mining photovoltaic cell manufacturing data 2014. Is sour crude or sour gas a potential source of Se and Te?. Progress in Photovoltaics: Research and Applications, 2011, 19, 991-995 Structural studies of multilayered Ge nanocrystals embedded in SiO2 matrix fabricated using magnetron sputtering. Energy Procedia, 2010, 2, 243-250 CRYSTALLINE SILICON SOLAR CELLS. Series on Photoconversion of Solar Energy, 2001, 149-197 Bias and thickness dependence of the infra-red Schottky diode studied by internal photoemission. Solid-State Electronics, 1996, 39, 277-280 1.7 9.6%-Efficient all-inorganic Sb2(S,Se)3 solar cells with a MnS hole-transporting layer. Journal of Materials Chemistry A, Optimization of solar thermophotovoltaic systems including the thermal balance 2016, 24LiS% Efficiency silicon PERT cells on MCZ substrates and 24Li7% efficiency PERL cells on FZ substrates 1999, 7, 471 Solar Cell Efficiency Tables Large-Grain Spanning Monolayer Cu ZnSnSe Thin-Film Solar Cells Grown from Metal Precursor Small, 2021, e2105044 Diode laser annealing on sputtered epitaxial Cu2ZnSnS4 thin films. Physica Status Solidi-Rapid Research Letters, 2017, 11, 1700033 Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. Materials Research Society Symposia Proceedings, 2014, 1638, 1 Fast separation of front and bulk defects via photoluminescence on silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 128, 260-263 A photovoltaic light trapping estimation method for textured glass based on surface decoupling calculation. Solar Energy Materials and Solar Cells, 2013, 109, 82-90 Structural and photoluminescence properties of superlattice structures consisting of Sn-rich SiO2	Data mining photovoltaic cell manufacturing data 2014, Is sour crude or sour gas a potential source of Se and Te?. Progress in Photovoltaics: Research and Applications, 2011, 19, 991-995 Structural studies of multilayered Ge nanocrystals embedded in SiO2 matrix fabricated using magnetron sputtering. Energy Procedia, 2010, 2, 243-250 CRYSTALLINE SILICON SOLAR CELLS. Series on Photoconversion of Solar Energy, 2001, 149-197 5 Bias and thickness dependence of the infra-red Schottky diode studied by internal photoemission. 2014, 1996, 39, 277-280 9.6%-Efficient all-inorganic Sb2(S,Se)3 solar cells with a MnS hole-transporting layer. Journal of Materials Chemistry A. Optimization of solar thermophotovoltaic systems including the thermal balance 2016, 24B% Efficiency silicon PERT cells on MCZ substrates and 24D% efficiency PERL cells on FZ substrates 1999, 7, 471 Solar Cell Efficiency Tables Large-Grain Spanning Monolayer Cu ZnSnSe Thin-Film Solar Cells Grown from Metal Precursor 5mall, 2021, e2105044 Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. 4esearch Letters, 2017, 11, 1700033 Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. 4esearch Society Symposia Proceedings, 2014, 1638, 1 Fast separation of front and bulk defects via photoluminescence on silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 128, 260-263 A photovoltaic light trapping estimation method for textured glass based on surface decoupling calculation. Solar Energy Materials and Solar Cells, 2013, 109, 82-90 Structural and photoluminescence properties of superlattice structures consisting of Sn-rich SiO2

103	Photovoltaic Material Resources. Semiconductors and Semimetals, 2012, 143-183	0.6	4
102	Investigating polysilicon thin film structural changes during rapid thermal annealing of a thin film crystalline silicon on glass solar cell. <i>Journal of Materials Science: Materials in Electronics</i> , 2010 , 21, 994-9	9 3 9 ¹	4
101	Modelling of metal [hsulator [lemiconductor devices featuring a silicon quantum well. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2010 , 42, 2211-2217	3	4
100	Thin semiconducting layers as active and passive emitters for thermophotonics and thermophotovoltaics. <i>Solar Energy</i> , 2004 , 76, 251-254	6.8	4
99	Plasma-grooved, buried contact silicon solar cells. <i>Journal of Applied Physics</i> , 1991 , 69, 4135-4136	2.5	4
98	23.6% efficient low resistivity silicon concentrator solar cell. <i>Applied Physics Letters</i> , 1986 , 49, 194-195	3.4	4
97	High resolution imaging of the interfacial region in metal-insulator-semiconductor and Schottky diodes. <i>Journal of Applied Physics</i> , 1983 , 54, 2885-2887	2.5	4
96	Limiting efficiencies of GaInP/GaAs/Ge up-conversion systems: Addressing the issue of radiative coupling. <i>Applied Physics Letters</i> , 2016 , 109, 123508	3.4	4
95	Improved silicon optical parameters at 25°C, 295 K and 300 K including temperature coefficients. <i>Progress in Photovoltaics: Research and Applications</i> ,	6.8	4
94	In situ X-ray diffraction study on epitaxial growth of SixGe1☑ on Si by aluminium-assisted crystallization. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 1672-1676	5.7	3
93	Thermal Issues in Photovoltaics and Existing Solutions 2017 , 1-28		3
92	Up-conversion of sunlight by GaInP/GaAs/Ge cell stacks: Limiting efficiency, practical limitation and comparison with tandem cells. <i>Energy Procedia</i> , 2017 , 130, 60-65	2.3	3
91	Fabrication of low-defect Ge-rich SiGe-on-insulator by continuous-wave diode laser-induced recrystallization. <i>Journal of Alloys and Compounds</i> , 2018 , 744, 679-682	5.7	3
90	Reduction of Threading Dislocation Density in Sputtered Ge/Si(100) Epitaxial Films by Continuous-Wave Diode Laser-Induced Recrystallization. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1893-18	397 ¹	3
89	High-Efficiency Silicon Solar Cell Concepts 2018 , 95-128		3
88	Developments in Crystalline Silicon Solar Cells 2014 , 65-84		3
87	Design of bottom silicon solar cell for multijunction devices 2013,		3
86	Residual stress study of silicon quantum dot in silicon carbide matrix by Raman measurement. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 185-188		3

85	Correlation between fixed charge and capacitance peaks in silicon nanocrystal metallhsulatorBemiconductor devices. <i>Semiconductor Science and Technology</i> , 2010 , 25, 045011	1.8	3
84	Third Generation Photovoltaics: Assessment of progress over the last decade 2009 ,		3
83	Study of silicon quantum dot p-n or p-i-n junction devices on c-Si substrate. <i>Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on,</i> 2008 ,		3
82	Australian educational and research opportunities arising through rapid growth in the photovoltaic industry. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 67, 647-654	6.4	3
81	Silicon solar cells: at the crossroads. <i>Progress in Photovoltaics: Research and Applications</i> , 2000 , 8, 443-45	5% .8	3
8o	Limits to the efficiency of silicon multilayer thin film solar cells. <i>Solar Energy Materials and Solar Cells</i> , 1996 , 41-42, 3-17	6.4	3
79	The ultimate efficiency of organolead halide perovskite solar cells limited by Auger processes. Journal of Materials Research, 2016 , 31, 2197-2203	2.5	3
78	Optical and Thermal Emission Benefits of Differently Textured Glass for Photovoltaic Modules. <i>IEEE Journal of Photovoltaics</i> , 2021 , 11, 131-137	3.7	3
77	Understanding the effect of Cadmium alloying in high-efficiency sulphide kesterite Cu2ZnxCd1-xSnS4 solar cell by PDS and HRSTEM 2018 ,		3
76	Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination 1999 , 7, 327		3
75	Diode laser annealing of epitaxy Ge on sapphire (0 0 0 1) grown by magnetron sputtering. <i>Materials Letters</i> , 2017 , 208, 35-38	3.3	2
74	Investigating the effect of silicon thickness on ultra-thin silicon on insulator as a compliant substrate for gallium arsenide heteroepitaxial growth. <i>Thin Solid Films</i> , 2018 , 653, 371-376	2.2	2
73	Generalised distributed model of a solar cell: Lateral injection effects and impact on cell design and characterisation. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 147, 108-114	6.4	2
72	Diode laser annealing of CZTS thin film solar cells 2015 ,		2
71	Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-7	3.2	2
70	Correction to "Morphology and Carrier Extraction Study of Organic-Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy". <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4038	6.4	2
69	Doping of Silicon Quantum Dots Embedded in Nitride Matrix for All-Silicon Tandem Cells. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 10NE10	1.4	2
68	Structural, mechanical and optical properties of Ge nanocrystals embedded in superlattices fabricated by in situ low temperature annealing. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2012 , 45, 207-213	3	2

67	Heterogeneous nano-particle array for the realization of the hot carrier solar cell 2013,		2
66	Fabrication and characterisation of silicon quantum dots in SiO 2 /Si 3 N 4 hybrid matrix 2010 ,		2
65	Ultrafast transient grating spectroscopy in silicon quantum dots. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 4575-9	3	2
64	Modelling implications of recent silicon bandgap narrowing expressions. <i>Progress in Photovoltaics: Research and Applications</i> , 1997 , 5, 261-263	.8	2
63	Conductivity of self-organized silicon quantum dots embedded in silicon dioxide 2005,		2
62	Two Colour Excitation Up-Conversion Efficiency Enhancement for a Silicon Photovoltaic Device using Er3+-Doped Phosphors 2006 ,		2
61	Effects of silicon nanocrystallite density on the Raman-scattering spectra of silicon quantum dot superlattices 2006 ,		2
60	High Efficiency Bulk Crystalline Silicon Light Emitting Diodes. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 744, 1		2
59	Diffusion effects in p-type PtSi Schottky diodes under reverse bias. <i>Journal of Applied Physics</i> , 1991 , 69, 3601-3604	5	2
58	Fully integrated Schottky array: a new generation of metal silicide infrared detectors 1990 , 1308, 58		2
57	The open-circuit voltage of vertical-junction solar cells. <i>Journal Physics D: Applied Physics</i> , 1976 , 9, L57-L59		2
56	Low-Cost Fabrication of Sb 2 S 3 Solar Cells: Direct Evaporation from Raw Stibnite Ore. <i>Solar Rrl</i> ,21008437.	1	2
55	Status of Crystalline Photovoltaic Technology 2000 , 2630-2635		2
54	Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment. <i>Solar Rrl</i> , 2020 , 4, 2070012	1	2
53	2016,		2
52	Large Voc improvement and 9.2% efficient pure sulfide Cu2ZnSnS4 solar cells by heterojunction interface engineering 2016 ,		2
51	Pathways towards a 50% efficiency spectrum-splitting photovoltaic system: Application of built-in filters and generalization of concept. <i>Energy Procedia</i> , 2018 , 150, 83-86	3	2
50	Immediate and Temporal Enhancement of Power Conversion Efficiency in Surface-Passivated Perovskite Solar Cells. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 39178-39185	5	2

49	A Thermal Model for the Design of Photovoltaic Devices 2017 , 75-103		1
48	Laser-induced aluminium-assisted crystallization of Ge-rich SixGe1-x epitaxy on Si. <i>Thin Solid Films</i> , 2019 , 679, 55-57	2.2	1
47	Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammonium-Based Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 1900463	7.1	1
46	High-Efficiency Silicon Solar Cell Concepts 2013 , 87-113		1
45	The design of single-junction GaAs and dual-junction GaAs/Si in the presence of threading dislocation density 2015 ,		1
44	CRYSTALLINE SILICON SOLAR CELLS. Series on Photoconversion of Solar Energy, 2014 , 87-137		1
43	Cu2ZnSnS4 thin film solar cell fabricated by magnetron sputtering and sulfurization. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1638, 1		1
42	High-Efficiency Silicon Solar Cell Concepts 2012 , 99-128		1
41	Photovoltaic Devices 2013 , 213-223		1
40	Investigating Large Area Fabrication of Silicon Quantum Dots in a Nitride Matrix for Photovoltaic Applications 2006 ,		1
39	Effect of annealing temperature on the formation of silicon nanocrystals in a nitride matrix 2006,		1
38	High-efficiency silicon light emitting diodes. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 16, 351-358	3	1
37	High-Efficiency Silicon Solar Cell Concepts 2003 , 253-278		1
36	High-efficiency silicon solar cell concepts 2005 , 189-214		1
35	Capitalizing on two dimensional minority carrier injection in silicon solar cell design. <i>Solar Energy Materials and Solar Cells</i> , 1996 , 41-42, 183-193	6.4	1
34	Strained Si1⊠Gex layers grown by low-temperature liquid-phase epitaxy. <i>Materials Letters</i> , 1992 , 14, 263-267	3.3	1
33	Solar cell research and development in Australia. Solar Cells, 1989, 26, 1-11		1
32	Improved soldering technique for concentrator solar cells. <i>Solar Cells</i> , 1990 , 28, 193-197		1

31	Full Schottky high density 2-D infrared charge coupled detector array. <i>Solid-State Electronics</i> , 1987 , 30, 1341-1343	1.7	1
30	Solar cells: Future directions. <i>Solar Cells</i> , 1984 , 12, 95-97		1
29	Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells. Journal of Materials Chemistry A, 2022 , 10, 2105-2112	13	1
28	24.7% Efficient PERL silicon Solar Cells and Other High Efficiency Solar Cell and Module Research at the University of New South Wales 2000 , 165-172		1
27	Effect of a ZnS intermediate layer on properties of Cu2ZnSnS4 films from sputtered Zn/CuSn precursors on Si (100) substrate 2016 ,		1
26	2016,		1
25	Australian Photovoltaics Research and Development. ACS Energy Letters, 2016, 1, 516-520	20.1	1
24	Design of Bragg Reflector in GaInP/GaInAs/Ge Triple-junction Solar Cells for Spectrum Splitting Applications 2018 ,		1
23	Efficiency Improvement of High Band Gap Cu2ZnSnS4 Solar Cell Achieved by Silver Incorporation 2018 ,		1
22	Effects of Al thickness on one-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering. <i>Materials Letters</i> , 2017 , 209, 32-35	3.3	O
21	Fabrication of multilayered Ge nanocrystals embedded in SiOxGeNy films. <i>Applied Surface Science</i> , 2008 , 254, 7527-7530	6.7	O
20	Passive PV module cooling under free convection through vortex generators. <i>Renewable Energy</i> , 2022 , 190, 319-329	8.1	O
19	Advanced Concepts 2017, 160-166		
18	Specificities of the Thermal Behavior of Current and Emerging Photovoltaic Technologies 2017 , 105-13	28	
17	Germanium Template Assisted Integration of Gallium Arsenide Nanocrystals on Silicon: A Versatile Platform for Modern Optoelectronic Materials. <i>Advanced Optical Materials</i> , 2018 , 6, 1701329	8.1	
16	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1771, 33-44		
15	Growth of Highly (112) Oriented Cu2ZnSnS4 Thin Film on Sapphire Substrate by Radio Frequency Magnetron Sputtering. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1640, 1		
14	LIMITS TO PHOTOVOLTAIC ENERGY CONVERSION EFFICIENCY. <i>Series on Photoconversion of Solar Energy</i> , 2014 , 41-86		

LIST OF PUBLICATIONS

13	A ultra-thin silicon nitride barrier layer implementation for silicon quantum dots in amorphous silicon carbide matrix in photovoltaic application. <i>Energy Procedia</i> , 2011 , 10, 271-281	2.3
12	Heavily Boron-Doped Hydrogenated Polycrystalline Ge Thin Films Prepared by Cosputtering. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, H354	
11	Measuring strain changes during production of thin film crystalline silicon on glass photovoltaic modules. <i>Journal of Materials Science: Materials in Electronics</i> , 2010 , 21, 1207-1212	2.1
10	The Future of Thin Film Solar Cells 2008 , 96-101	
9	Very High-efficiency in Silico Photovoltaics 2006 , 167-185	
8	Silicon Parallel Multilayer Thin Film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 426, 103	
7	Highlights of the Fourth International Photovoltaic Science and Engineering Conference (PVSEC-4). <i>Solar Cells</i> , 1989 , 27, 3-10	
6	High performance silicon solar cells using low dose phosphorus implants. <i>Nuclear Instruments & Methods in Physics Research</i> , 1981 , 191, 51-53	
5	Fabrication of thick narrow electrodes on concentrator solar cells. <i>Journal of Vacuum Science and Technology</i> , 1982 , 20, 13-15	
4	High Efficiency Silicon Light Emitting Diodes 2003 , 1-10	
3	Solar Cell Efficiency Tables (Version 22) 2018 , 63-71	
2	Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammonium-Based Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2070043	7.1
1	Corrigendum to Improved Silicon Optical Parameters at 25°C, 295K and 300K including Temperature Coefficients [Prog. Photovolt: Res. Appl. 2022; 30: 164°179]. <i>Progress in Photovoltaics: Research and Applications</i> ,	6.8