
Marcelo Lazzarotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6635209/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Research International, 2014, 59, 85-99.	2.9	175
2	Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. Journal of Chromatography A, 2012, 1226, 124-139.	1.8	118
3	Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chemistry, 2013, 141, 3897-3905.	4.2	74
4	Main differences between volatiles of sparkling and base wines accessed through comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detection and chemometric tools. Food Chemistry, 2014, 164, 427-437.	4.2	51
5	Enhancement of the functional properties of Dioscoreaceas native starches: Mixture as a green modification process. Thermochimica Acta, 2017, 649, 31-40.	1.2	32
6	Investigation of the photo-oxidation of cassava starch granules. Journal of Thermal Analysis and Calorimetry, 2016, 123, 2129-2137.	2.0	31
7	Volatile characterization by multivariate optimization of headspace-solid phase microextraction and sensorial evaluation of chardonnay base wines. Journal of the Brazilian Chemical Society, 2012, 23, 678-687.	0.6	27
8	Brazilian Dioscoreaceas starches. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1869-1877.	2.0	26
9	Study of the Effects of Ultraviolet Light and Sodium Hypochlorite Solutions on Properties of Cassava Starch Granules. Food Biophysics, 2015, 10, 368-374.	1.4	21
10	Influence of stingless bee genus (Scaptotrigona and Melipona) on the mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology, 2019, 56, 4742-4748.	1.4	18
11	Green Development of Biodegradable Films Based on Native Yam (Dioscoreaceae) Starch Mixtures. Starch/Staerke, 2018, 70, 1700234.	1.1	14
12	Thermal tools in the evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. Journal of Thermal Analysis and Calorimetry, 2015, 121, 1263-1271.	2.0	13
13	New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp. Thermochimica Acta, 2016, 638, 44-51.	1.2	13
14	Evolved gas analysis (TG-DSC-FTIR) and (Pyr-GC–MS) in the disposal of medicines (aceclofenac). Journal of Analytical and Applied Pyrolysis, 2016, 119, 157-161.	2.6	13
15	Brazilian Amazon white yam (Dioscorea sp.) starch. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2075-2088.	2.0	13
16	Impact of treatment with HCL/alcoholic in the modification of corn starch. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1705-1713.	2.0	10
17	Nanotechnology applied to improve functionality in food. , 2017, , 177-219.		9
18	Novel Oxidized and UVâ€Irradiated <i>Araucaria angustifolia</i> Pine Seed Starch for Enhanced Functional Properties. Starch/Staerke, 2019, 71, 1800140.	1.1	8

#	Article	IF	CITATIONS
19	Hydrolysis of the low gelatinization temperature Araucaria angustifolia pine seed starch. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1269-1278.	2.0	7
20	Thermal profile of 4,4′-dinitrocarbanilide determined by thermogravimetry–differential scanning calorimetry–mass spectrometry (TG–DSC–MS) and pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS). Journal of Thermal Analysis and Calorimetry, 2019, 138, 697-701.	2.0	7
21	Thermoanalytical Evaluation of Essential Oils of the Leaves From Eucalyptus SPP Susceptible and Resistant toGlycaspis Brimblecombei. Brazilian Journal of Thermal Analysis, 2016, 5, 1-6.	0.0	6
22	A chemometric approach for moisture control in stingless bee honey using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2018, 26, 379-388.	0.8	5
23	Substituent effects on ion complexation ofpara-tert-butylcalix[4]arene esters. Journal of Physical Organic Chemistry, 2006, 19, 765-770.	0.9	4
24	Corn starch incorporated with freeze-concentrated llex paraguariensis extracts: a potential nutraceutical product. Journal of Thermal Analysis and Calorimetry, 2021, 146, 171-176.	2.0	3
25	Induced effects by oxidation with potassium permanganate on the thermal, morphological, colorimetric and pasting properties of corn starch. Ukrainian Food Journal, 2017, 6, 197-210.	0.1	3
26	Thermal tool to evaluate essential oil composition of different Eucalyptus genotypes in relation to Glycaspis brimblecombei susceptibility (Hemiptera: Aphalaridae). Journal of Thermal Analysis and Calorimetry, 2022, 147, 7363-7371.	2.0	2
27	Optimized Modified Topliss Method: A Tool for Quantitative Structure-Activity Relationship Studies. Arzneimittelforschung, 2005, 55, 604-615.	0.5	1
28	Electronic parameters of cation complexation by calixarene ionophores. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 313-322.	0.9	1
29	Thermal analysis of salts from 4-nitrophenol and aliphatic amines. Journal of Thermal Analysis and Calorimetry, 2019, 138, 351-357.	2.0	1
30	Study of Isolated Starches of Pinhão Seeds Marketed in the Brazilian Southern Region. Brazilian Journal of Thermal Analysis, 2017, 6, .	0.0	0
31	METODOLOGIA PARA EXTRAÇÃ $_{ m f}$ O DE FENÓLICOS TOTAIS E ANTIOXIDANTES DA ERVA-MATE. Iniciacao Cientifica CESUMAR, 2019, 21, 45.	0.0	0
32	From the manual method of Topliss to a modified quantitative method. Arzneimittelforschung, 2002, 52, 125-32.	0.5	0