Myung Hwan Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6634479/publications.pdf

Version: 2024-02-01

59 papers	1,044 citations	18 h-index	476904 29 g-index
			8
59 all docs	59 docs citations	59 times ranked	1186 citing authors

#	Article	IF	CITATIONS
1	Novel Dimeric <i>o</i> -Carboranyl Triarylborane: Intriguing Ratiometric Color-Tunable Sensor via Aggregation-Induced Emission by Fluoride Anions. Organometallics, 2016, 35, 1771-1777.	1.1	68
2	Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2018, 64, 478-483.	2.9	62
3	Efficient Aluminum Catalysts for the Chemical Conversion of CO 2 into Cyclic Carbonates at Room Temperature and Atmospheric CO 2 Pressure. ChemSusChem, 2019, 12, 4211-4220.	3.6	56
4	Dinuclear Aluminum Complexes as Catalysts for Cycloaddition of CO2 to Epoxides. Organometallics, 2014, 33, 2770-2775.	1.1	48
5	Vinyl-Type Polynorbornenes with Triarylamine Side Groups: A New Class of Soluble Hole-Transporting Materials for OLEDs. Macromolecules, 2009, 42, 6840-6843.	2.2	46
6	Triarylborane-functionalized polynorbornenes: Direct polymerization and signal amplification in fluoride sensing. Polymer, 2012, 53, 1857-1863.	1.8	36
7	Synthesis and properties of polyethylene with sideâ€chain triphenylamines as holeâ€transporting materials. Journal of Polymer Science Part A, 2008, 46, 5816-5825.	2.5	32
8	<i>Ortho</i> â€Carboraneâ€Functionalized Luminescent Polyethylene: Potential Chemodosimeter for the Sensing of Nucleophilic Anions. Chemistry - an Asian Journal, 2011, 6, 1362-1366.	1.7	32
9	Defect Engineering into Metal–Organic Frameworks for the Rapid and Sequential Installation of Functionalities. Inorganic Chemistry, 2018, 57, 1040-1047.	1.9	31
10	Spirobifluoreneâ€Based <i>o</i> â€Carboranyl Compounds: Insights into the Rotational Effect of Carborane Cages on Photoluminescence. Chemistry - A European Journal, 2020, 26, 548-557.	1.7	30
11	Intriguing Indium-salen Complexes as Multicolor Luminophores. Inorganic Chemistry, 2017, 56, 2621-2626.	1.9	28
12	Highly Active Salenâ€Based Aluminum Catalyst for the Coupling of Carbon Dioxide with Epoxides at Ambient Temperature. European Journal of Inorganic Chemistry, 2017, 2017, 5372-5378.	1.0	27
13	Polynorbornene copolymers with pendent o-carborane and carbazole groups: Novel side-chain donor–acceptor copolymers for turn-on sensing of nucleophilic anions. Polymer, 2013, 54, 6321-6328.	1.8	26
14	Luminescent polyethylene with side-chain triarylboranes: Synthesis and fluoride sensing properties. Polymer, 2011, 52, 1510-1514.	1.8	23
15	Titanium complexes containing bidentate benzotriazole ligands as catalysts for the ring opening polymerization of lactide. Polyhedron, 2014, 67, 286-294.	1.0	23
16	Insights into the effects of substitution position on the photophysics of mono- <i>o</i> -carborane-substituted pyrenes. Inorganic Chemistry Frontiers, 2020, 7, 2949-2959.	3.0	23
17	Vinylâ€Type Polynorbornenes with Pendant PCBM: A Novel Acceptor for Organic Solar Cells. Macromolecular Rapid Communications, 2012, 33, 1119-1125.	2.0	22
18	Transition Metal-Catalyzed α-Position Carbon–Carbon Bond Formations of Carbonyl Derivatives. Catalysts, 2020, 10, 861.	1.6	21

#	Article	IF	CITATIONS
19	Synthesis and Dual-Emission Feature of Salen-Al/Triarylborane Dyads. Inorganic Chemistry, 2017, 56, 6039-6043.	1.9	20
20	Synthesis and hole-transporting properties of vinyl-type polynorbornenes with ethyl ester linked triarylamine side groups. Synthetic Metals, 2010, 160, 2000-2007.	2.1	19
21	2-Phenylpyridine- and 2-(benzo[$<$ i $>$ b $<$ i $>$]thiophen-2-yl)pyridine-based $<$ i $>$ o $<$ i $>$ -carboranyl compounds: impact of the structural formation of aromatic rings on photophysical properties. Dalton Transactions, 2019, 48, 1467-1476.	1.6	18
22	Europiumâ€Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones and Photoluminescence Tracking. Advanced Synthesis and Catalysis, 2019, 361, 1259-1264.	2.1	18
23	Systematic design of indium-based luminophores with color-tunable emission via combined manipulation of HOMO and LUMO levels. Dyes and Pigments, 2018, 158, 285-294.	2.0	17
24	Synthesis and photophysical properties of phenanthroimidazole–triarylborane dyads: intriguing â€⁻turn-on' sensing mediated by fluoride anions. RSC Advances, 2017, 7, 10345-10352.	1.7	16
25	Novel aluminum–BODIPY dyads: intriguing dual-emission via photoinduced energy transfer. Dalton Transactions, 2016, 45, 5825-5832.	1.6	15
26	Effects of Multiâ€Carborane Substitution on the Photophysical and Electronâ€Accepting Properties of ⟨i⟩o⟨ i⟩â€Carboranylbenzene Compounds. European Journal of Inorganic Chemistry, 2017, 2017, 2496-2503.	1.0	15
27	Carbazole-Appended Salen–Indium Conjugate Systems: Synthesis and Enhanced Luminescence Efficiency. Inorganic Chemistry, 2019, 58, 12358-12364.	1.9	15
28	Synthesis of o-carborane-functionalized metal–organic frameworks through ligand exchanges for aggregation-induced emission in the solid state. Chemical Communications, 2019, 55, 11844-11847.	2.2	14
29	Salen-indium/triarylborane triads: synthesis and ratiometric emission-colour changes by fluoride ion binding. Dalton Transactions, 2018, 47, 5310-5317.	1.6	13
30	A salen–Al/carbazole dyad-based guest–host assembly: enhancement of luminescence efficiency <i>via</i> intramolecular energy transfer. Chemical Communications, 2018, 54, 4712-4715.	2.2	13
31	Systematic Control of the Overlapping Energy Region for an Efficient Intramolecular Energy Transfer: Functionalized Salen–Al/Triphenylamine Guest–Host Assemblies. Inorganic Chemistry, 2019, 58, 2454-2462.	1.9	13
32	Metallocene-catalyzed synthesis of polyethylenes with side-chain triarylamines: Effects of catalyst structure and triarylamine functionality. Polymer, 2010, 51, 4735-4743.	1.8	12
33	Zirconocene Complexes as Catalysts for the Cycloaddition of CO ₂ to Propylene Oxide. European Journal of Inorganic Chemistry, 2014, 2014, 5107-5112.	1.0	12
34	Synthesis of functionalized titanium-carboxylate molecular clusters and their catalytic activity. Journal of Industrial and Engineering Chemistry, 2017, 53, 171-176.	2.9	12
35	Flexibility in metal–organic frameworks derived from positional and electronic effects of functional groups. CrystEngComm, 2017, 19, 5361-5368.	1.3	12
36	Halide-Free and Bifunctional One-Component Catalysts for the Coupling of Carbon Dioxide and Epoxides. Inorganic Chemistry, 2019, 58, 5922-5931.	1.9	12

#	Article	IF	CITATIONS
37	Polynorbornenes with pendant PCBM as an acceptor for OPVs: Ring-opening metathesis versus vinyl-addition polymerization. European Polymer Journal, 2014, 51, 37-44.	2.6	11
38	Tin(IV)-Porphyrin Tetracarbonyl Cobaltate: An Efficient Catalyst for the Carbonylation of Epoxides. Catalysts, 2019, 9, 311.	1.6	11
39	Transient Directing Groupâ€Assisted C─H Bond Functionalization of Aliphatic Amines: Strategies for Efficiency and Siteâ€Selectivity. Bulletin of the Korean Chemical Society, 2020, 41, 582-587.	1.0	11
40	Ir-Catalyzed C–H Amidation Using Carbamoyl Azides for the Syntheses of Unsymmetrical Ureas. Journal of Organic Chemistry, 2020, 85, 6233-6241.	1.7	11
41	Synthesis of secondary and tertiary amine-containing MOFs: C–N bond cleavage during MOF synthesis. CrystEngComm, 2015, 17, 5644-5650.	1.3	10
42	Synthesis, characterization, and cycloaddition reaction studies of zinc(II) acetate complexes containing 2,6-bis(pyrazol-1-yl)pyridine and 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine ligands. Polyhedron, 2017, 125, 101-106.	1.0	10
43	Deboronation-induced ratiometric emission sensing of fluoride by 1,3,5-tris-(o-carboranyl-methyl)benzene. Tetrahedron Letters, 2017, 58, 3246-3250.	0.7	9
44	Effect of Planarity of Aromatic Rings Appended to o-Carborane on Photophysical Properties: A Series of o-Carboranyl Compounds Based on 2-Phenylpyridine- and 2-(Benzo[b]thiophen-2-yl)pyridine. Molecules, 2019, 24, 201.	1.7	9
45	A Series of Quinolinol-Based Indium Luminophores: A Rational Design Approach for Manipulating Photophysical Properties. Inorganic Chemistry, 2019, 58, 8056-8063.	1.9	8
46	Lewis acidity enhancement of triarylborane by appended phosphine oxide groups. Dalton Transactions, 2015, 44, 4765-4772.	1.6	7
47	Effect of the Metal within Regioisomeric Paddleâ€Wheelâ€Type Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 14414-14420.	1.7	7
48	Three Component Controls in Pillared Metal-Organic Frameworks for Catalytic Carbon Dioxide Fixation. Catalysts, 2018, 8, 565.	1.6	5
49	Highly red-emissive salen–indium complexes: impact of 4-amino-substitution on the photophysical properties. Inorganic Chemistry Frontiers, 2021, 9, 119-126.	3.0	5
50	A biphenylene-bridged dinuclear constrained geometry titanium complex for ethylene and ethylene/1-octene polymerizations. Journal of Organometallic Chemistry, 2012, 696, 4315-4320.	0.8	4
51	Zirconium complexes with pendant aryloxy groups attached to the metallocene moiety by ethyl or hexyl spacers. Polyhedron, 2014, 67, 205-212.	1.0	4
52	Synthesis and Electroluminescence Properties of 3-(Trifluoromethyl)phenyl-Substituted 9,10-Diarylanthracene Derivatives for Blue Organic Light-Emitting Diodes. Applied Sciences (Switzerland), 2017, 7, 1109.	1.3	4
53	Synthesis and Photophysical Properties of (Cl 2 Ph)Salenâ€based Indium Complexes. Bulletin of the Korean Chemical Society, 2020, 41, 748-752.	1.0	4
54	Selective Synthesis of Homoleptic and Heteroleptic Triarylboranes and Their Novel Colour Tunable Properties. ChemistrySelect, 2016, 1, 1239-1242.	0.7	3

#	Article	IF	CITATIONS
55	Photophysical Properties of Spirobifluorene-Based o-Carboranyl Compounds Altered by Structurally Rotating the Carborane Cages. Molecules, 2019, 24, 4135.	1.7	3
56	Experimental, Structural, and Computational Investigation of Mixed Metal–Organic Frameworks from Regioisomeric Ligands for Porosity Control. Crystal Growth and Design, 2020, 20, 5338-5345.	1.4	3
57	Synthesis of Asymmetric Anthracene Derivatives and Their Application for Blue Organic Lightâ€emitting Diodes. Bulletin of the Korean Chemical Society, 2016, 37, 136-141.	1.0	2
58	Synthesis and Photophysical Properties of a Series of Dimeric Indium Quinolinates. Molecules, 2021, 26, 34.	1.7	2
59	Transformation of tertâ€Butyl Amide Directing Groups to Nitriles in Iridium atalyzed C–H Bond Functionalizations. Asian Journal of Organic Chemistry, 2021, 10, 3411.	1.3	1